Low-complexity Block dividing Coding Method for Image Compression using Wavelets

A thesis presented in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Systems Engineering

at Massey University, Palmerston North New Zealand

Jihai Zhu 2007
Abstract

Image coding plays a key role in multimedia signal processing and communications. JPEG2000 is the latest image coding standard, it uses the EBCOT (Embedded Block Coding with Optimal Truncation) algorithm. The EBCOT exhibits excellent compression performance, but with high complexity. The need to reduce this complexity but maintain similar performance to EBCOT has inspired a significant amount of research activity in the image coding community.

Within the development of image compression techniques based on wavelet transforms, the EZW (Embedded Zerotree Wavelet) and the SPIHT (Set Partitioning in Hierarchical Trees) have played an important role. The EZW algorithm was the first breakthrough in wavelet based image coding. The SPIHT algorithm achieves similar performance to EBCOT, but with fewer features. The other very important algorithm is SBHP (Sub-band Block Hierarchical Partitioning), which attracted significant investigation during the JPEG2000 development process.

In this thesis, the history of the development of wavelet transform is reviewed, and a discussion is presented on the implementation issues for wavelet transforms. The above mentioned four main coding methods for image compression using wavelet transforms are studied in detail. More importantly the factors that affect coding efficiency are identified.

The main contribution of this research is the introduction of a new low-complexity coding algorithm for image compression based on wavelet transforms. The algorithm is based on block dividing coding (BDC) with an optimised packet assembly. Our extensive simulation results show that the proposed algorithm outperforms JPEG2000 in lossless coding, even though it still leaves a narrow gap in lossy coding situations.
Acknowledgements

This thesis would not have been written without the help and support that I received. I would like to take this opportunity to express my sincerest thanks to everyone who helped me.

I thank my principal supervisor Dr Bing Du and associate supervisor Professor Richard Harris and Dr Xiang Gui for providing the research topic that I felt was both interesting from a research perspective and had the potential to produce marketable results. They have always been patient, knowledgeable, and supportive, which were all invaluable in completing this thesis. I also have enjoyed the fact that they always have confidence in my abilities, and me even when I had difficulties.

I would also like to thank Mr. John Hayward, for his patient proof-reading and grammatical corrections.

Finally, I would like to thank my family for their encouragement and support.
TABLE OF CONTENTS

1 INTRODUCTION .. 1

1.1 OVERVIEW .. 1
1.2 OUTLINE .. 2
1.3 NOTATION ... 3

2 WAVELET TRANSFORMS ... 4

2.1 HISTORY OF WAVELET TRANSFORMS AND APPLICATIONS .. 4

2.1.1 Wavelet Transform and Sub-band Transforms .. 4
2.1.2 Connection between Wavelet Transform and Sub-band Transform 7
2.1.3 Applications of Wavelet Transform .. 7

2.2 THE IMPLEMENT ISSUES OF WAVELET TRANSFORM ... 7

2.2.1 One-dimension Wavelet Transform .. 8
2.2.2 Two-dimension Wavelet Transform .. 8
2.2.3 Filter Examples .. 9
2.2.4 Convolution Method ... 10
2.2.5 Symmetric Boundary Extension .. 12
2.2.6 Lifting Scheme .. 12
2.2.7 Scalar Quantization with Filter Normalization .. 13

2.3 THE FEATURES OF DWT .. 14

3 EMBEDDED IMAGE CODING ... 16

3.1 INTRODUCTION .. 16
3.2 EZW (EMBEDDED ZEROTREE WAVELET) .. 17
3.3 SPIHT (SET PARTITIONING IN HIERARCHICAL TREES) .. 20
3.4 EBCOT (EMBEDDED BLOCK CODING WITH OPTIMIZED TRUNCATION) 22
3.5 SBHP ... 26
3.6 COMPARISON OF METHODS ... 28
3.7 SUMMARY ..31

4 FACTORS AFFECTING THE SIZE OF THE FINAL BIT-STREAM ... 32

4.1 GENERAL CODEC STRUCTURE ... 32

4.1.1 Pre-processing/post-processing .. 32
4.1.2 Discrete wavelet transform .. 33
4.1.3 Quantization/dequantization .. 33
4.1.4 Bit-plane coding .. 35
4.1.5 Bit-stream assembling ... 36
4.1.6 Rate control ... 36
4.1.7 Bit-stream decoder .. 37

4.2 FOUR AFFECTING FACTORS .. 37
4.2.1 Filters ... 38
4.2.2 Significant encoding method .. 38
4.2.3 Refinement encoding method .. 38
4.2.4 Entropy coding ... 38
4.3 NEW CODEC STRUCTURE... 39
4.3.1 Strategies to overcome the affecting factors ... 39
4.3.2 New codec scheme .. 41
5 BLOCK DIVIDING CODING ALGORITHM .. 43
5.1 INTRODUCTION .. 43
5.2 A NEW STRATEGY TO CODE THE COEFFICIENTS ... 43
5.2.1 Coding the coefficients ... 43
5.2.2 Three block dividing methods ... 46
5.3 BLOCK DIVIDING CODING ALGORITHM .. 49
5.4 A SIMPLE EXAMPLE... 53
5.5 ENTROPY CODING .. 58
5.5.1 Entropy coding of the binary bits from the LSP ... 59
5.5.2 Entropy coding of the symbols from the LIP .. 61
5.5.3 Entropy coding of the symbols of the 2x2 blocks from LIS ... 61
5.5.4 Entropy coding of the binary bits in the buffer three from the LIS 61
6 OPTIMIZED ASSEMBLING CODING .. 64
6.1 INTRODUCTION .. 64
6.2 OPTIMIZED ASSEMBLING CODING ALGORITHM ... 65
6.3 PACKET FORMATION.. 67
6.4 KEY FEATURES OF BDC .. 68
6.4.1 Precise rate control .. 68
6.4.2 Resolution scalable ... 68
6.4.3 SNR scalable .. 69
6.4.4 High compression performance ... 69
6.4.5 Error resilience .. 69
6.4.6 Parallelism ... 69
7 NUMERICAL RESULTS ... 70
7.1 INTRODUCTION .. 70
7.2 TEST CONDITIONS.. 70
7.3 TEST RESULTS .. 71
7.3.1 Lossless compression performance .. 71
7.3.2 Lossy compression performance using the (9, 7) filter ... 72
7.3.3 Lossy compression performance using the (5, 3) filter ... 77
7.4 ANALYSIS OF EXPERIMENTAL RESULTS ... 78
LIST OF FIGURES

Figure 1 A wavelet example ... 6
Figure 2 Convolution implementation of the one-dimensional sub-band transform .. 8
Figure 3 Two-level wavelet transforms ... 9
Figure 4 An example of wavelet transformation using a Daubechies (9, 7) filter .. 11
Figure 5 Lifting steps for the (5, 3) filter .. 13
Figure 6 Lifting step for the (9, 7) filter ... 13
Figure 7 The tree structure and scan order .. 17
Figure 8 Three levels Shapiro coefficients .. 19
Figure 9 The coding process of EZW .. 19
Figure 10 Parent–descendent relationships in the tree structure 20
Figure 11 Block partition and compressed data from every small block 23
Figure 12 Two stages coding structure of EBCOT 25
Figure 13 Example of quad-tree coding structure 27
Figure 14 Codec structure ... 32
Figure 15 DC-level shifting .. 33
Figure 16 The main factors affecting the amount of final bit-stream 37
Figure 17 The binary representation of coefficients 40
Figure 18 New Codec structure ... 42
Figure 19 An example of the distribution of coefficients 44
Figure 20 The coding block in the 3-level wavelet decomposition 44
Figure 21 An example of a multi bit-plane .. 45
Figure 22 An example of a bit-plane .. 46
Figure 23 An example of first kind of dividing method 48
Figure 24 An example of third kind of dividing method 48
Figure 25 The number and distribution of significant bits on the bit-plane 54
Figure 26 Second sub block ... 55
Figure 27 Third block .. 56
Figure 28 Fourth block .. 57
Figure 29 The coding results in every bit-plane ... 63
Figure 30 The process of the optimized assembling coding 67
Figure 31 The three popular test images ... 71
Figure 32 The reconstructed images of Barbara .. 74
Figure 33 The reconstructed images of Lena .. 75
Figure 34 The reconstructed images of Goldhill .. 76
LIST OF TABLES

Table 1 Coefficients of the Daubechies (9, 7) Filter ... 10
Table 2 Coefficients of the Legall (5, 3) Filter ... 10
Table 3 Normalization of 5-level wavelet transformation ... 14
Table 4 Comparison of the results from SPIHT and EBCOT ... 26
Table 5 Comparison of lossy coding performance for common test images 29
Table 6 Coefficients in the wavelet array .. 39
Table 7 The bit amount distribution of Lena image (512x512) ... 41
Table 8 Array of coefficients .. 53
Table 9 Data structure of bit-stream packet ... 67
Table 10 Data structure of final bit-stream .. 68
Table 11 Comparison of lossless compression performance .. 72
Table 12 The PSNR performance of Barbara using the (9, 7) filter ... 72
Table 13 The PSNR performance of Lena using the (9, 7) filter .. 73
Table 14 The PSNR performance of Goldhill using the (9, 7) filter ... 73
Table 15 Loss performance of Barbara using the (5, 3) filter (in dB) ... 77
Table 16 Loss performance of Lena using the (5, 3) filter (in dB) .. 78
Table 17 Loss performance of Barbara using the (5, 3) filter and the (9, 7) filter (in dB) 78
Table 18 The difference of the PSNR performance of Barbara using the (9, 7) filter 79