Container Port Productivity

A thesis submitted in partial fulfilment of the requirements of the degree of
Master of Logistics and Supply Chain Management
At Massey University
Palmerston North Campus

Nicholas Flack
2014
Abstract
The international container port industry has recently gone through a process of rationalising the number of ports in response to increasing vessel sizes. Continued globalisation in trade means that container volumes are concentrated towards main consolidation points and hub ports. The aim of this research is to investigate the existence of a relationship between the capacity utilisation, volume and productivity of container ports. This will allow the research to provide insight to the resulting productivity impacts from the continued trend in the consolidation of container ports. Academic theory and previous research suggests that increased volume and capacity utilisation will mean downward pressure on productivity.

Inland hub facilities provide an alternative means of quickly providing additional port capacity for the ports remaining after consolidation which is traditionally cheaper than port land or technology increases. This research also investigates whether the use of inland hubs by container ports impacts on the relationships throughput volume, capacity utilisation or productivity of the integrated seaport.

The context for this research is New Zealand, which has a relatively high number of international container ports that are highly competitive across the small domestic container industry. The New Zealand port sector is predicted to go through significant change and rationalisation over the short to medium term as some ports choose not to or cannot afford to invest in the required infrastructure to handle the larger container vessels, although the speed and results of port rationalisation has been heavily debated over the past decade.

Collection of publically available information on the productivity, volume and capacity utilisation produced a quality data set for the six ports that handle ninety percent of New Zealand containerised trade. Regression and statistical analysis is completed on this data set to outline the existence and significance of any relationships. Although this data set is not primarily collected by the author, it is of high quality as has been collected by an objective government agency for the specific purposes of consistently monitoring productivity and growth of New Zealand seaport on a regular basis. The use of secondary data brings with it drawbacks in relation to quality and reliability, therefore more detailed analysis was also completed for an individual port using data collected by the author directed from port operating system. This allows for the confirmation of conclusions developed throughout the analysis of national level data.

This research expands the current academic knowledge with analysis in a smaller trade and port environment than the traditional examples of America or Europe. This research mostly confirms the relationships between volume, capacity and productivity of container ports experienced in international academic literature, however it also shows that the relationship between productivity and volume may be positive (opposite to other literature) dependent on the port, the nature of the volume change and the level of utilisation. It also shows that inland port facilities can be used as a means to improve the productivity and reduce delays in port operations. Finally, this research advances New Zealand academic literature by providing the first detailed analysis of the relationship between capacity, volume and productivity in New Zealand container ports.
1. SETTING THE SCENE

- **1.1 Industry Context** 2
- **1.2 Research Objectives** 3
- **1.3 Research Methodology** 4
- **1.4 Contribution of the Research** 5
- **1.5 Limitations of the Research** 7
- **1.6 Document structure** 8

2 LITERATURE REVIEW

- **2.1 Introduction** 9
- **2.2 Review of International Logistics Literature – where do ports fit in?** 9
- **2.3 New Zealand logistics and port research** 17
- **2.4 Overview of Container ports** 20
 - **2.4.1 Waterside – Cranes and Stevedoring** 21
 - **2.4.2 Yard** 22
 - **2.4.3 Landside** 23
 - **2.4.4 TEU vs. FEU vs. Container Units** 23
- **2.5 Productivity of a container terminal** 24
- **2.6 Capacity of a container terminal** 29
- **2.7 Means of increasing capacity and productivity – inland hubs** 32
- **2.8 Relationships between throughput, productivity and capacity** 35
- **2.9 Summary** 39
- **2.10 Gap in literature and where this research fits in** 41

3 INDUSTRY BACKGROUND

- **3.1 Introduction** 43
- **3.2 Importance of trade to New Zealand** 43
- **3.3 New Zealand’s distance to trading partners** 45
- **3.4 Importance of New Zealand Seaports** 46
- **3.5 Introduction to New Zealand’s seaports** 48
- **3.6 Competition between New Zealand seaports** 52
- **3.7 Government Leadership in the Sector** 55
- **3.8 Use of inland hubs** 57
- **3.9 Future Expectations for the Industry - Rationalisation** 59
- **3.10 Summary** 65

4 METHODOLOGY

- **4.1 Introduction** 67
- **4.2 Research Objectives** 67
- **4.3 The Process of Developing a Research Methodology** 67
Figure 2.1 Simplified Logistics Chain. Source: New Zealand Productivity Commission (2011)

Figure 2.2: Diagrammatic Overviews of Logistics Development in Academia

Figure 2.3: Summary of the measures of productivity typically used across the different elements of the container terminal Source: Kasypi, Shah and Mohammad (2013)

Figure 2.4 Timeline of Tasks Involved in Completing the Stevedoring Operation Source: Author's own work based on observing tasks at Lyttelton Port of Christchurch and CentrePort Wellington

Figure 2.5: Theoretical Relationship between Volume, Capacity Utilisation and Productivity. Source: Author's own work

Figure 3.6: New Zealand’s Main Ports by Percentage of Value of Imports and Exports Source; New Zealand Productivity Commission (2012) Note: Includes both Containerised and Non Containerised products

Figure 3.7 Comparison of Total Annual Throughput of North and South Island Ports by TEU volumes between 1997 and 2009. Source: Rockpoint Corporate Finance

Figure 3.8 Comparison of Total Annual Throughput of North Island Ports by TEU Volumes between 1997 and 2009. Source: Rockpoint Corporate Finance

Figure 3.9 Comparison of Total Annual Throughput of South Island Ports by TEU Volumes between 1997 and 2009. Source: Rockpoint Corporate Finance

Figure 3.10: Evolution of Container Ships Source; Ashar and Rodrigue (2012)

Figure 5.11 Container volumes for New Zealand’s six largest container ports, Quarter one 2009 – Quarter four 2012

Figure 5.12 Utilisation of Yard Capacity for New Zealand’s major container terminals under sustainable loadings between Quarter 1 2009 and Quarter 4 2012

Figure 5.13: Utilisation of Crane Capacity for New Zealand’s major container terminals under sustainable loadings between Quarter 1 2009 and Quarter 4 2012

Figure 5.14 Crane productivity rates for New Zealand’s six largest container ports, Quarter one 2009 – Quarter four 2012

Figure 5.15 Ship productivity rates for New Zealand’s six largest container ports, Quarter one 2009 – Quarter four 2012

Figure 5.16 Vessel productivity rates for New Zealand’s six largest container ports, Quarter one 2009 – Quarter four 2012

Figure 5.17: Diagrammatic Summary of New Zealand Container Port Variables used in this Investigation

Figure 5.18 Correlation between Volume and Capacity for Auckland and Wellington ports

Figure 5.19: Summary of Investigation Results against the Expected Hypotheses

Figure 5.20: Productivity change when volume increases by 1,000 containers

Figure 6.21 Average Vessel Container Exchange at Lyttelton Port of Christchurch between August 2001 and January 2013

Figure 6.22 Container Vessel Calls per Month at Lyttelton Port of Christchurch between August 2001 and January 2013

Figure 6.23: 30 day moving average Utilisation of Peak Crane or Yard Capacity for Lyttelton Port of Christchurch container terminal between August 2001 and January 2013

Figure 6.24 Crane productivity rates for Lyttelton Port of Christchurch Container Terminal, August 2001 – January 2013

Figure 6.25 Ship productivity rates for Lyttelton Port of Christchurch Container Terminal, August 2001 – January 2013

Figure 6.26 Vessel productivity rates for Lyttelton Port of Christchurch Container Terminal, August 2001 – January 2013

Figure 6.27 Crane Intensity for Lyttelton Port of Christchurch Container Terminal, August 2001 – January 2013

Figure 6.28 Crane Breakdown Hours per Vessel Call for Lyttelton Port of Christchurch Container Terminal, August 2001 – January 2013

Figure 6.29 Time Series Plot of Lyttelton Container Terminal and CityDepot Inland Port Throughput volumes between November 2005 and November 2012

Figure 6.30 Time series plot of Lyttelton Container Terminal Productivity and CityDepot Inland Port between November 2005 and November 2012

Figure 6.31 Relationship between Container Terminal Utilisation and Inland Hub Volume

Figure 7.32: Comparison of the variable against examples in the literature

Figure 7.33: Relationships between the variables – comparison of those in the literature and those observed in this research
Figure 7.34: Diagrammatic Overview of the Relationship between Volume or Utilisation and Productivity 134
Figure 7.35: Diagrammatic Overview of the Relationship between Inland Hub Use and Container Terminal Performance 136
Table 2.1 New Zealand Trade by Value 2012 Calendar Year - Percentage of Total Source; Statistics New Zealand	45
Table 3.2 Comparison of the Average Hinterlands of New Zealand and Australian Main Container Ports	53
Table 3 Land Transport Distances between all New Zealand Ports, in Kilometres. Source: Author's Calculations	53
Table 4 Land Transport Distances between New Zealand’s Main Container Ports, in Kilometres. Source: Author’s Calculations	53
Table 4.5: Overview of the Research Layers and Available Approaches Saunders et.al (2009)	68
Table 4.6 Overview of the Research Approach used based on Saunders et.al 2009 Research Onion	81
Table 4.7 Calculation of Annual Crane Throughput Capacity for New Zealand’s Main Container Terminals	87
Table 5.8 Calculation of Annual Yard Throughput Capacity for New Zealand’s Main Container Terminals Source: Author’s Calculations	89
Table 5.9 Market share changes associated with industrial strike action at Ports of Auckland 2012 Source: Author’s Calculations	91
Table 5.10 Multivariate correlation analysis results - crane utilisation and productivity - New Zealand’s major container terminals	99
Table 5.11 Multivariate correlation analysis results - yard utilisation and productivity - New Zealand’s major container terminals	99
Table 10.12 Regression analysis results – volume and crane capacity utilisation	159
Table 10.13 Regression analysis results – volume and yard capacity utilisation	159
Table 10.14 Regression analysis results – crane productivity rate and crane capacity utilisation	160
Table 10.15 Regression analysis results – ship productivity rate and crane capacity utilisation	160
Table 10.16 Regression analysis results – vessel productivity rate and crane capacity utilisation	161
Table 10.17 Regression analysis results – crane productivity rate and yard capacity utilisation	161
Table 10.18 Regression analysis results – ship productivity rate and yard capacity utilisation	162
Table 10.19 Regression analysis results – vessel productivity rate and yard capacity utilisation	162
Table 10.20 Regression analysis results – crane productivity rate and container volume	163
Table 10.21 Regression analysis results – ship productivity rate and container volume	163
Table 10.22 Regression analysis results – vessel productivity rate and container volume	164
Table 10.23 Regression analysis results – Crane and yard utilisation percentage and container volume for Lyttelton Port of Christchurch Container Terminal with detailed data.	165
Table 10.24 Regression analysis results – Productivity rate and utilisation percentage for Lyttelton Port of Christchurch Container Terminal with detailed data.	165
Table 10.25 Regression analysis results – Productivity rate and container volume for Lyttelton Port of Christchurch Container Terminal with detailed data.	166
Table 10.26 Regression analysis results – Total port throughput and Inland hub throughput volume for Lyttelton Port of Christchurch Container Terminal with detailed data.	166
Table 10.27 Regression analysis results – Crane productivity and Inland hub throughput volume for Lyttelton Port of Christchurch Container Terminal with detailed data.	166
Table 10.28 Regression analysis results – Port Crane Capacity Utilisation and Inland hub throughput volume for Lyttelton Port of Christchurch Container Terminal with detailed data.	167