Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
THE DEVELOPMENT OF A PULSE RF HIGH POWER AMPLIFIER FOR A PORTABLE NMR SPECTROMETER

TIANYANG TED JIANG
2008
THE DEVELOPMENT OF A PULSE RF HIGH POWER AMPLIFIER FOR A PORTABLE NMR SPECTROMETER

A thesis presented in partial fulfillment of the requirement for the degree of Master of Engineering at Massey University

TIANYANG TED JIANG
2008
ABSTRACT

The RF high power amplifier is a key module in the NMR spectrometer. Robustness, lower power consumption, and small size are requirements. In this thesis, devices are studied and different design approaches are considered. New ideas are introduced, and simulations are used to show if these work. A real prototype is developed. Results from the prototype are satisfactory and in good agreement with the simulation results. This allows for the possibility of a real portable NMR spectrometer ‘Lapspec’.

Points of note:
- Feedback to stabilize amplifier,
- Hard bias to improve rise time of pulse,
- A rugged device is chosen,
- Power limiter technology is used to avoid overdrive amplifier,
- Lower value attenuator at output of final stage to reduce load VSWR,
- Reason of spike is studied, the solution to reduce spike is given,
- The reason of instability of amplifier with NMR load is analyzed,
- A method is introduced to ensure there is no oscillation while the High Power Amplifier (HPA) is connected with the NMR probe.
ACKNOWLEDGMENTS

I would like to express my utmost thanks and gratitude to my supervisor Associate Professor Subhas C Mukhopadhyay for the opportunity for my Master degree, for guiding me in the research work, and for emotional support.

I would also like to thank Dr Robin Dykstra, another supervisor, for initiation, technical and financial guidance and support, as well as milestone checking and encouragement.

I thank Dr. Craig Eccles for general academic advice, helpful discussion, and valuable suggestions in my thesis writing. I really enjoyed the time working with him.

I also thank Dr. Andrew Coy, CEO of Magritek and Foundation for Research, Science & Technology of New Zealand for financial support in this project.

Thanks to Rob Ward, John Zisong Zhen, Dafnis and Alan for support in PCB design software, MS Word and photo processing, also mechanical work.

Finally, I would thank my wife, my son and my younger brother for their love, patience, constant support and encouragement.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>1-3</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>1-4</td>
</tr>
<tr>
<td>CONTENTS</td>
<td>1-5</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>1-9</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>1-13</td>
</tr>
</tbody>
</table>

1 CHAPTER ONE

INTRODUCTION

1.1 HPA and portable NMR system

1.2 Robustness of design

1.3 Pulse mode

1.4 Rise time and spike

1.5 Size

1.6 Power consumption

1.7 Search in market

1.8 Conclusion

2 CHAPTER TWO

SPECIFICATION AND DESIGN

2.1 Specification

2.2 Block diagram

2.3 Design principle of robust HPA

2.4 Choose key components

2.4.1 Criteria

2.4.2 BJT vs. MOSFET:

2.4.3 Pulse vs. CW:

2.4.4 High frequency device vs. low frequency device

2.4.5 Gate leakage vs. lift time

2.4.6 High voltage device vs. low voltage device
3.4.7.5 Summary

3.5 Study of the final stage 3-72
 3.5.1 Formula vs. simulation for the max Po 3-72
 3.5.2 The Rise time vs. the LP of the output transformer 3-72
 3.5.3 Spike vs. Idq 3-72

3.6 NMR probe as a part of HPA Principle 3-73
 3.6.1 Principle 3-73
 3.6.2 Initial results 3-75
 3.6.3 Optimum results 3-77
 3.6.4 Summary 3-79

3.7 ATT vs. load VSWR (Voltage Standing Wave Ratio) 3-79
 3.7.1 Issue 3-79
 3.7.2 Options and discussion 3-80
 3.7.3 Solution 3-80

4 CHAPTER FOUR 4-82
FABRICATION AND EXPERIMENTS 4-82
4.1 Introduction 4-82
4.2 PCB and module 4-82
4.3 Boost 4-83
 4.3.1 Introduction 4-83
 4.3.2 Schematic and layout 4-84
 4.3.3 DC operating voltage 4-87
 4.3.4 Test gain 4-88
 4.3.5 Test waveform 4-90
 4.3.6 Test linearity of DUT 4-96
 4.3.7 VSWR of DUT 4-101
 4.3.8 Conclusion 4-104
4.4 Final stage and whole HPA 4-105
 4.4.1 Schematic 4-105
LIST OF FIGURES

Figure 1.1: HPA in NMR system 1-16
Figure 1.2: Load VSWR of the Mole, a typical NMR probe 1-16
Figure 2.1: Different NMR probes, (a) Mole for 3.26MHz and 100W, (b) Profile Mouse for 19MHz and 100W, (c) Cuff Magnet for 24MHz and 10W, (d) Mini probe for 30MHz and 10W, (e) Halbach for 12MHz and 10W, (f) Mouse for 19MHz and 100W 2-20
Figure 2.2: HPA block diagram 2-22
Figure 3.1: Single end 3-32
Figure 3.2: Gain and stable, Pi=-10dBm 3-33
Figure 3.3: Input power sweep, F=1-30MHz 3-34
Figure 3.4: Stable factor is 1.15 for R8 =10 ohm 3-35
Figure 3.5: Push-pull with a single device 3-36
Figure 3.6: Push-pull with parallel 3-36
Figure 3.7: Po-1 and Gain, push-pull with parallel, 1-30MHz 3-37
Figure 3.8: Frequency response, push-pull with parallel 3-37
Figure 3.9: The initial DUT of last stage 3-42
Figure 3.10: Simulation setting 3-44
Figure 3.11: Pulse result of the initial DUT, 8MHz, Pi=27dBm 3-45
Figure 3.12: Pulse result of the initial DUT, 8MHz, 29dBm 3-50
Figure 3.13: Gain and stable, initial DUT, P1=10 dBm 3-52
Figure 3.14: Gain and stable, initial DUT, Pi=27 dBm 3-52
Figure 3.15: Gain and stable, feedback, Pi=27 dBm 3-53
Figure 3.16: Gain and stable, feedback, Pi=10 dBm 3-54
Figure 3.17: Modified DUT for CW gain and stable 3-55
Figure 3.18: Gain and stable, Pi=10dBm 3-55
Figure 3.19: Pulse result, 8MHz, Pi=27 dBm 3-57
Figure 3.20: DUT with hard bias and feedback 3-59
Figure 3.21: Pulse result with hard bias, 8 MHz, Pi=30 dBm, L21/L22=10 uH 3-60
Figure 3.22: Pulse result with hard bias, 8 MHz, Pi=30 dBm, L21/L22=5.6 uH 3-61
Figure 3.23: Pulse result with hard bias, 8 MHz, Pi=10 dBm, L=5.6 uH 3-63
Figure 3.24: Gain and stable, Pi=10 dBm, 10 KHz to 30 MHz with step size 10 KHz 3-64
Figure 3.25: Gain and stable, Pi=30dBm, 10 KHz to 30 MHz with step size 10 KHz 3-65
Figure 3.26: Output impedance, no feedback, Pi=10 dBm 3-66
Figure 3.27: Output impedance, no feedback, Pi=30 dBm 3-66
Figure 3.28: Stable and VSWR, C55/C56=100 nF 3-67
Figure 3.29: Stable and VSWR, C55/C56=2000 nF 3-68
Figure 3.30: Pulse result, 8 MHz, Pi=30 dBm, gate bias drive 13.3 Vpp 3-69
Figure 3.31: Pulse result, 8 MHz, Pi=30 dBm, gate bias drive 10 Vpp 3-70
Figure 3.32: New DUT-1 3-71
Figure 3.33: Relationship of spikes 3-73
Figure 3.34: Reflection gain illustration 3-74
Figure 3.35: Set up for analysis of reflection performance 3-75
Figure 3.36: Final stage in original condition 3-76
Figure 3.37: HPA reflection with SGA7489+L8821P+SR401 in original condition (Lm=1.5uH) 3-77
Figure 3.38: SR401 stage 3-78
Figure 3.39: Reflection of HPA with optimum circuit 3-78
Figure 3.40: VSWR of the Mole 3-79
Figure 3.41: VSWR vs. ATT in experience 3-81
Figure 4.1: PCB and assembly 4-83
Figure 4.2: Heat sink 4-83
Figure 4.3: Pre-drive stage, 1 of 3 of boost 4-84
Figure 4.4: Drive stage, 2 of 3 of boost 4-85
Figure 4.5: DC power supply of boost, 3 of 3 of boost 4-86
Figure 4.6: Boost PCB Rev2.0, 35 mmX84 mmX1.5 mm, double side copper FR4 4-86
Figure 4.7: Boost rev2.0, 85 mmX36 mmX18 mm 4-87
Figure 4.8: DUT and system setting for testing gain 4-88
Figure 4.9: Gain at Pi=-60dBm 4-89
Figure 4.10: Gain with different Pi level 4-89
Figure 4.11: Test setting with 50 ohm load 4-90
Figure 4.12: Vo on 50 ohm of Boost Rev2.0 at 8 MHz, (a) Pi=-10 dBm, (b) Pi=-8 dBm, (c) Pi=-5 dBm, (d) Pi=0 dBm 4-91
Figure 4.13: Vo on 50 ohm of Boost Rev2.0 at 1MHz, (a) Pi=-10 dBm, (b) Pi=-8 dBm, (c) Pi=-5 dBm, (d) Pi=0 dBm 4-92
Figure 4.14: Vo on 50 ohm of Boost Rev2.0 at 25 MHz, (a) Pi=-10 dBm, (b) Pi=-8 dBm, (c) Pi=-5 dBm, (d) Pi=0 dBm 4-93
Figure 4.15: Waveform of Vo (ch1) on 50 ohm at Pi=-10 dBm, Gate blanking (ch2), (a) 1 MHz, (b) 8 MHz, (c) 25 MHz 4-94
Figure 4.16: Waveform of Vo (ch1) on 50 ohm at Pi=0 dBm, Gate blanking (ch2), (a) 1 MHz, (b) 8 MHz, (c) 25 MHz 4-95
Figure 4.17: Rise edge of Vo (ch1) at 8 MHz and Pi=0 dBm, gate blanking (ch2) 4-96
Figure 4.18: Test DUT linear 4-97
Figure 4.19: Check test system linear 4-98
Figure 4.20: Calibration Vi 4-98
Figure 4.21: Calibration output voltage 4-98
Figure 4.22: Check test system linear at 8 MHz 4-99
Figure 4.23: DUT linear at 8 MHz, Po-1=28 dBm 4-99
Figure 4.24: Output voltage waveform at 8 MHz and Pi=-5 dBm 4-100
Figure 4.25: (a) DUT and 40 dB ATT, (b) Calibration input voltage, (c) Kea and Oscilloscope, (d) DC power supply and reading 4-101
Figure 4.26: Test setting of input VSWR of DUT
Figure 4.27: Test setting of output VSWR
Figure 4.28: Input VSWR of DUT
Figure 4.29: (a) Test input VSWR, (b) Test output VSWR
Figure 4.30: Output VSWR of DUT
Figure 4.31: Schematic of DUT
Figure 4.32: Vgs without FET, max PM position, Vc=10 V
Figure 4.33: Final stage layout
Figure 4.34: Shield of last stage
Figure 4.35: Setting, 1 of 2
Figure 4.36: Setting, 2 of 2
Figure 4.37: Vo (ch1X10) and Vi (ch2X10) at TX=-30, (a) 2MHz, (b) 8 MHz, (c) 25 MHz
Figure 4.38: Test VSWR at 8 MHz and TX=-30, (a) Vf, (b) Vr, (c) Outline of Vf, (d) Outline of Vr
Figure 4.39 Waveform of Vi (ch1X10), Vo (ch2X10) and gate blanking (ch3), (a) Rise edge of Vo, (b) Fall edge, (c) Vi and Vo at rise edge, (d) Envelope
Figure 4.40: Vgs (DC) and Vds (AC) at Vc=8 V and max position of MP, (a) Vgsh, (b) Vgsl, (c) Vdsh, (d) Vdsl
Figure 4.41: Vdsl detail
Figure 4.42: Rise time and spike at 8 MHz and TX=-20, Vf (ch1), Vo (ch2), Vgsh (ch3), (a) Vgsh, (b) Vf, Vo and Vgsh, (c) Vf, Vo and gate blanking, (d) Vf and Vo
Figure 4.43: Setting delay
Figure 4.44: Experienced rise time and spick at 8 MHz and TX=-20, Vf (ch1), Vo (ch2), Vgsh (ch3), (a) Delay 4 us, (b) Delay 3 us, (c) Delay 2 us, (d) Delay 1 us
Figure 4.45: Gain
Figure 4.46: VSWR
Figure 4.47: Vo (ch2) and Vf (ch1) (a) TX=-20, (b) TX=-10, (c) TX=-8, (d) TX=-6
Figure 4.48: Test system linearity at 8 MHz
Figure 4.49: Linearity of DUT at 8MHz
Figure 4.50: Vo at max sweep input, (a) 2 MHz, TX=-10, (b) 8 MHz, TX=-10 (c) 25 MHz, TX=-6
Figure 4.51: Waveform at 25MHz and max sweep input (TX=-6), (a) Vo, (b) Vf
Figure 4.52: SW setting
Figure 4.53: Vi (ch1) and Vo (ch2), (a) One pulse, (b) DC=4.6%, (c) DC=8.5%, (d) DC=12.8%
Figure 4.54: DUT and test system
Figure 4.55: SW used and setting
Figure 4.56: Robust test at 195 W
Figure 4.57: Robust test at 184 W
Figure 4.58: Warm up HPA setting
Figure 4.59: CPMG-16 echo, 12.3 MHz, new Halbach 1#, 1# HPA R3.0
Figure 4.60: T1 sat, 12.3 MHz, new Halbach 1#, 1# HPA R3.0
Figure 4.61: T1 add, 12.3 MHz, new Halbach 1#, 1# HPA R3.0
Figure 7.1: (a), (b) and (c) HPA, (d) HPA in Kea NMR spectrometer
LIST OF TABLES

Table 1.1: Performance summary of HPA vendors 1-18
Table 2.1: The specification of the HPA 2-20
Table 2.2: Bipolar transistor and RF power MOSFET characteristics when used as RF amplifiers [1] 2-23
Table 2.3: Device list of final stage 2-26
Table 2.4: Device list of drive stage 2-27
Table 2.5: List of devices for pre-drive stage 2-28
Table 3.1: Compare single and parallel device in push-pull 3-38
Table 3.2: Load line vs. Po-1 3-41
Table 3.3: The meaning of the sub-figure a) 3-46
Table 3.4: The meaning of the sub-figure b) 3-46
Table 3.5: The meaning of the sub-figure c) 3-47
Table 3.6: The meaning of the sub-figure d) 3-47
Table 3.7: The meaning of the sub-figure e) 3-47
Table 3.8: The meaning of the sub-figure f) 3-47
Table 3.9: The meaning of the sub-figure g) 3-48
Table 3.10: The meaning of the sub-figure h) 3-48
Table 3.11: The meaning of the sub-figure i) 3-48
Table 3.12: The meaning of the sub-figure j) 3-48
Table 3.13: The summary of the meaning of the frequency domain figure 3-51
Table 3.14: Impedance of SRC 3-58
Table 3.15: Gain vs. gate resistor 3-67
Table 3.16: Fine tuning Vgs 3-72
Table 3.17: Formula vs. simulation for the max Po 3-72
Table 3.18: Equivalent VSWR vs. ATT 3-81
Table 4.1: DC operating voltage 4-87
Table 4.2: Test order and term matrix 4-97
Table 4.3: Po-1 and Gain summary 4-100
Table 4.4: Gain and in VSWR 4-109
Table 4.5: OutVSWR 4-110
Table 4.6: Waveform and Gain vs. TX 4-113
Table 4.7: Gain and Po vs. Vgs 4-114
Table 4.8: Cold stat 4-114
Table 4.9: Linear vs. TX 4-118
Table 4.10: Po-1 of DUT 4-120
Table 4.11: xdB compression output of DUT 4-120
Table 4.12: Tolerance Po, G and Pi 4-122
Table 4.13: Vo vs. duty cycle 4-123