Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
HEAT-INDUCED INTERACTIONS OF β-LACTOGLOBULIN, α-LACTALBUMIN AND CASEIN MICELLES.

A THESIS
PRESENTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTERS OF TECHNOLOGY IN FOOD TECHNOLOGY

at

MASSEY UNIVERSITY
PALMERSTON NORTH
NEW ZEALAND

Martha Chogugudza Chiweshe
1996
ABSTRACT

The denaturation and aggregation of β-lactoglobulin and α-lactalbumin were studied in the following mixtures, designed to simulate the protein concentrations and ionic environment in normal skim milk.

1. β-lactoglobulin (0.4% w/v),
2. α-lactalbumin (0.15% w/v),
3. β-lactoglobulin (0.4% w/v) and casein micelles (~2.6% w/v),
4. α-lactalbumin (0.15% w/v) and casein micelles (~2.6% w/v),
5. β-lactoglobulin (0.4% w/v) and α-lactalbumin (0.15% w/v) and
6. β-lactoglobulin (0.4% w/v), α-lactalbumin (0.15% w/v) and casein micelles (~2.6% w/v)

Proteins were dissolved in SMUF, pH 6.7, and heated at 80 and 95°C for various times and centrifuged at 100,000 g for 60 min. The supernatants and pellets obtained were analysed using gel electrophoresis under non-dissociating (Native-PAGE in the absence of dissociating and reducing agents), dissociating but non-reducing (SDSNR-PAGE) and dissociating and reducing conditions (SDSR-PAGE).

When β-lactoglobulin was heated alone and examined by native-PAGE, the quantity of native protein decreased with increasing heating time at 80°C. Addition of α-lactalbumin to the β-lactoglobulin solution increased the loss of β-lactoglobulin during the initial stages of heating. Addition of casein micelles to the β-lactoglobulin solution markedly increased the loss of native β-lactoglobulin throughout the heating period. The loss of β-lactoglobulin from the mixture containing β-lactoglobulin, α-lactalbumin and casein micelles was similar to that from the mixture of β-lactoglobulin and casein micelles. The loss of β-lactoglobulin from these protein mixtures could be described by second-order reaction kinetics. Heating these mixtures at 95°C caused very rapid loss of native β-lactoglobulin, but the effects of the addition of casein micelles and α-lactalbumin were generally similar to those observed at 80°C.

When α-lactalbumin was heated at 80°C either alone or in the presence of casein micelles, there was only a slight loss of the native α-lactalbumin. However the
corresponding losses of native α-lactalbumin were considerable greater on heating at 95°C. At both temperatures, the addition of β-lactoglobulin increased the rate of loss of α-lactalbumin substantially. The addition of casein micelles to the mixture of α-lactalbumin and β-lactoglobulin had little further effect on the loss of native α-lactalbumin. The rates of loss of α-lactalbumin at 95°C in all mixtures could be adequately described by first-order kinetics.

When β-lactoglobulin was heated either alone or in the presence of casein micelles and examined by SDSNR-PAGE, the loss of SDS-monomeric β-lactoglobulin was less than the loss of native β-lactoglobulin. In contrast, when α-lactalbumin was added to β-lactoglobulin or β-lactoglobulin and casein micelles mixture, the loss of SDS-monomeric β-lactoglobulin was comparable to that of native β-lactoglobulin. The difference between native and SDS-monomeric β-lactoglobulin represents aggregates that are linked by non-covalent (hydrophobic) interactions. Thus the protein mixtures containing α-lactalbumin, contain no or little non-covalently linked β-lactoglobulin aggregates, and consequently, all the β-lactoglobulin aggregates would be disulphide linked.

The results for the loss of SDS-monomeric and native α-lactalbumin at 95°C showed that both non-covalent and disulphide-linked aggregates of α-lactalbumin were present in all the protein mixtures studied.

When β-lactoglobulin solution was heated at 95°C, large aggregates were formed which could be sedimented at 100,000 g for 60 min. Addition of casein micelles to β-lactoglobulin solution caused greater sedimentation of β-lactoglobulin. Similar results were obtained when the mixture containing β-lactoglobulin, α-lactalbumin and casein micelles was heated at 95°C. In contrast, the mixture containing β-lactoglobulin and α-lactalbumin behaved in a similar manner to β-lactoglobulin alone.

When α-lactalbumin was heated at 95°C alone or in the presence of casein micelles, it did not interact to form large sedimentable aggregates. However when β-lactoglobulin was added to the above protein solutions, there was a considerable increase in sedimentation of α-lactalbumin.
ACKNOWLEDGEMENTS

I would like to thank my supervisor, Dr. Harjinder Singh, for his valuable guidance and assistance in all aspects of this project. Without his patience and helpful discussions this work might not have been completed.

I am also grateful to my co-supervisor, Dr. Mike Taylor for providing important guidance during the course of this work and for help in the preparation of the thesis.

I would like to acknowledge Prof. Ray Winger for providing me the opportunity to study in this department. David Oldfield is also acknowledged for his help in this research.

I would also like to thank all technical staff who co-operated and helped in many ways.

My thanks are also due to my fellow graduate students for their friendship and assistance.

The Ministry of Foreign Affairs and Trade is also thanked for sponsoring me in New Zealand.

The Collins family is kindly acknowledged for their hospitality and for making my stay in New Zealand a memorable one.

I am grateful to my family and friends in Zimbabwe for their emotional and moral support throughout my two years in New Zealand.

Last but not least, to my husband Darlington I say, thanks for the support, patience and love over the years.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>iv</td>
</tr>
<tr>
<td>CHAPTER 1: INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>CHAPTER 2: LITERATURE REVIEW</td>
<td>2</td>
</tr>
<tr>
<td>2.1 Milk proteins</td>
<td>2</td>
</tr>
<tr>
<td>2.1.1 Casein protein</td>
<td>2</td>
</tr>
<tr>
<td>2.1.2 Whey proteins</td>
<td>3</td>
</tr>
<tr>
<td>2.1.2.1 β-Lactoglobulin</td>
<td>3</td>
</tr>
<tr>
<td>2.1.2.2 α-Lactalbumin (α-la)</td>
<td>4</td>
</tr>
<tr>
<td>2.1.2.3 Bovine serum albumin (BSA)</td>
<td>5</td>
</tr>
<tr>
<td>2.1.2.4 Immunoglobulins</td>
<td>5</td>
</tr>
<tr>
<td>2.1.2.5 Proteose peptones</td>
<td>6</td>
</tr>
<tr>
<td>2.2 Thermal denaturation and aggregation of whey proteins</td>
<td>6</td>
</tr>
<tr>
<td>2.2.1 Methods used to evaluate the thermal denaturation and aggregation of whey protein</td>
<td>7</td>
</tr>
<tr>
<td>2.2.1.1 Solubility</td>
<td>8</td>
</tr>
<tr>
<td>2.2.1.2 Polyacrylamide gel electrophoresis (PAGE)</td>
<td>8</td>
</tr>
<tr>
<td>2.2.1.3 High performance liquid chromatography (HPLC)</td>
<td>9</td>
</tr>
<tr>
<td>2.2.1.4 Differential scanning calorimetry (DSC)</td>
<td>9</td>
</tr>
<tr>
<td>2.2.1.5 Immunology</td>
<td>11</td>
</tr>
<tr>
<td>2.2.1.6 Spectral properties</td>
<td>11</td>
</tr>
<tr>
<td>2.2.1.7 Other methods</td>
<td>12</td>
</tr>
<tr>
<td>2.2.2 Thermal denaturation of whey proteins in various media</td>
<td>12</td>
</tr>
<tr>
<td>2.2.2.1 Denaturation of whey proteins in skim milk</td>
<td>12</td>
</tr>
<tr>
<td>2.2.2.2 Denaturation of whey proteins in whey</td>
<td>15</td>
</tr>
<tr>
<td>2.2.2.3 Denaturation of whey proteins in buffered solutions</td>
<td>16</td>
</tr>
<tr>
<td>OBJECTIVES</td>
<td>25</td>
</tr>
<tr>
<td>CHAPTER 3: MATERIALS AND METHODS</td>
<td>26</td>
</tr>
</tbody>
</table>
3.1 Materials 26
3.2 Preparation of Simulated Milk Ultrafiltrate (SMUF) 26
3.3 Experimental procedure 27
 3.3.1 Preparation of protein solutions 27
 3.3.2 Heat treatment 30
 3.3.3 Centrifugation and analysis 30
3.4 Analysis of protein 30
3.5 Electrophoresis 31

CHAPTER 4: RESULTS AND DISCUSSION 37
4.1 Denaturation and aggregation of β-lactoglobulin and α-lactalbumin 37
 4.1.1 Changes in native β-lactoglobulin concentrations at 80°C (Native-PAGE) 37
 4.1.1.1 Kinetics of loss of native β-lactoglobulin 43
 4.1.2 Changes in native β-lactoglobulin concentrations at 95°C (Native-PAGE) 46
 4.1.3 Discussion 48
 4.1.4 Changes in native α-lactalbumin concentrations at 80°C (Native-PAGE) 52
 4.1.4.1 Kinetics of loss of native α-lactalbumin 55
 4.1.5 Changes in native α-lactalbumin concentrations at 95°C (Native-PAGE) 57
 4.1.5.1 Kinetics of loss of native α-lactalbumin 57
 4.1.6 Discussion 61
 4.1.7 Changes in SDS-monomeric β-lactoglobulin concentrations at 80°C (SDSNR-PAGE) 64
 4.1.8 Changes in SDS-monomeric β-lactoglobulin concentrations at 95°C 67
 4.1.9 Changes in SDS-monomeric α-lactalbumin concentrations at 80°C (SDSNR-PAGE) 69
 4.1.10 Changes in SDS-monomeric α-lactalbumin concentrations at 95°C (SDSNR-PAGE) 71
 4.1.11 Analysis of the sediments 74
4.1.12 Comparison of native- and SDSNR-PAGE results for β-lactoglobulin
4.1.13 Comparison of native- and SDSNR-PAGE results for α-lactalbumin
4.1.14 Discussion

4.2 Sedimentation of β-lactoglobulin and α-lactalbumin

4.2.1 Changes in non-sedimentable β-lactoglobulin concentrations at 80°C (SDSR-PAGE)
4.2.1.1 Kinetics of loss of non-sedimentable β-lactoglobulin
4.2.2 Changes in non-sedimentable β-lactoglobulin concentrations at 95°C (SDSR-PAGE)
4.2.3 Changes in non-sedimentable α-lactalbumin concentrations at 80°C (SDSR-PAGE)
4.2.4 Changes in non-sedimentable α-lactalbumin concentrations at 95°C (SDSR-PAGE)
4.2.5 Analysis of sediments
4.2.6 Comparison of native- and SDSR-PAGE results for β-lactoglobulin
4.2.7 Comparison of native- and SDSR-PAGE results for α-lactalbumin
4.2.8 Discussion

4.3 Possible overall denaturation and aggregation mechanisms

4.4 Conclusions

BIBLIOGRAPHY

APPENDIX