Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
REHABILITATION OF UNOXIDISED PYRITIC WASTE ROCK AND TAILINGS AT

MARTHA HILL GOLD MINE, N.Z.

A thesis presented in partial fulfilment of the requirements for the degree of

MASTER OF HORTICULTURAL SCIENCE

In Soil Science at

Massey University
Palmerston North, New Zealand

Kathy Anne Mason
July 1996
ABSTRACT

At the Martha Gold and Silver Mine in Waihi, New Zealand, land disturbed by mining operations is required to be revegetated. Areas include pit walls above the natural water level, the slopes of the dam impounding the tailings and the tailings surface. The research work reported in this thesis is concerned with revegetation of acid generating material situated on the pit walls, and tailings revegetation.

Hydroseeding with grass species onto pit slopes comprising unoxidised pyritic rock material proved to be unsuccessful because of acid generation which caused the pH to drop as low as 2.2 on the slope surface. Where calcite veins were present the pH was maintained at higher levels. It was found that a mixed species of hydroseeded grass grew successfully where the pH was 6.0 or above. Clover began to show signs of stress when the pH dropped to 4.5 and when the pH fell as low as 3.6, all grass died.

Boreholes at a diameter of 100 mm were drilled to a depth of 500 mm into the slope surface of pyritic rock material to provide planting holes for native species at 1.5 m intervals. Toetoe, manuka, kanuka, flax and akeake all had acceptable survival rates over a ten month period. Coprosma kirkii was not successful and is not recommended for further plantings. Topsoil placed in the boreholes was found to have a beneficial effect on the overall plant survival rate, more so than the addition of lime or fertiliser. Although survival rates for native plants were acceptable over a ten month period, the objective of providing a vegetation cover that would improve the visual appearance of the slope was not achieved with 1.5 m spacings between plants.

In contrast to the unoxidised pit slope material, tailings were found to have few limitations to plant growth. In 1992, two separate tailings trials were established to investigate the use of native plants as an alternative land use to pasture and the use of compost as an amendment for pasture production and native plant growth. Within the first six months following sowing, pasture dry matter yields from tailings plots with a 50 mm layer of compost applied to the surface were not significantly different from yields from tailings plots without a compost amendment although clover production was
visually greater on compost plots. For subsequent cuts, compost-amended plots gave significantly higher pasture dry matter yields than nil-compost plots. Yield differences after the first six months were considered to be due to the improved P status on compost-amended plots.

Yields off nil-compost plots in the first year of the 1992 trial averaged 11,000 kg DM/ha, compared to 9,000 kg DM/ha obtained from an earlier trial on an older tailings deposit (Union Hill). Yields off the compost-amended plots in the 1992 trial averaged 14,000 kg DM/ha, significantly higher than topsoil-amended plots in the Union Hill trial which yielded between 6,000 and 7,000 kg DM/ha in the first year. Yield differences between treatments of the two separate trials may have been due to differences in P status or rainfall.

The survival rate for the native plants in the tailings trial (flax, cabbage tree, kanuka and Pittosporum tenufolium) was 100%. The addition of compost caused significantly higher growth rates in the first six months but beyond six months no significant differences were observed.

A rehabilitation predictive model was developed for tailings rehabilitation which investigated costs and returns over a fourteen year period based on five different rehabilitation scenarios. The scenarios included the use of clay covers, resurfacing with compost in the event of a topsoil shortage, and a comparison between pasture and native plant land uses. It was found that if a clay cap was required on the tailings surface, large quantities of material would be required. Relatively high costs were found to be associated with the need for a clay cap and compost. Rehabilitation with native plant species was found to be more expensive than rehabilitation to pasture, and if treatment of surface water derived from the tailings surface was required, there would be significant added costs. Maintenance costs for natives were also found to be high and where pasture provides some revenue, further trials are required to determine whether revenue from natives timber species is possible.
ACKNOWLEDGEMENT

I wish to extend thanks to the following people for providing ideas, information and support which contributed to the completion of this thesis:

My supervisors, Professor Paul E.H. Gregg for his supervision, guidance, patience, encouragement and good advice given on so many occasions, and Dr Robert B. Stewart for advice, assistance and encouragement. I am truly grateful.

The staff of Waihi Gold Mining Co. Ltd. Many people have provided help and encouragement. I wish to thank the former Resident Manager, Richard Carlton, for initiating the tailings trials, and the current Resident Manager, Tim Gosling for his ongoing support and interest.

To the whole environmental team, especially Keith Brodie, but also Adriene Hanna, Ruby Boyd, Donna Fisher, and Kimberley Dunning for the help you have given me over the past months. Thanks also to Bob Drury for your help and support. Special thanks to Doreen McLeod for advice, support, and practical, hands-on help, many times, and to Henk Bange.

To Jeff Ruddock for building the tailings trial ponds, and the mill crew for their help in establishing the plots. Other staff members who have contributed in many ways, offering help, advice and support include Don McKay, Bruce Morrison, Dean Kennedy, Dean Fredicksen, and the sampling crew.

To Taupo Native Plant Nurseries who supplied the native plants for the tailings trials free of charge, and to Attwoods Fertilisers, who provided the compost free of charge.

Costs for the rehabilitation model were supplied by Jeff Ruddock (drainage and earthworks), Duncan Smeaton, (Agricultural Costs and Returns), and Wayne Allan (Native Plant Costs). Thanks also to Malcolm Lane for help with the model.
To Brian Bullen and Shane at Computer Solutions for solving many computer problems, and Mark Samson for producing some of the figures.

To my family, especially Mum and Alan, Lynley and Dave, Nina and Les, and Sonny - thanks for your support.

And last, but most importantly, special thanks to my fiance Pete for support and helpful advice over the past few months. We made it.
TABLE OF CONTENTS.

Abstract... i
Acknowledgements... iii
Table of Contents.. v
List of Figures... xiii
List of Tables... xv
List of Appendices... xvii

CHAPTER 1 -

INTRODUCTION AND OBJECTIVES ... 1

CHAPTER 2 -

THE REHABILITATION OF GOLD MINING TAILINGS AND WASTE MATERIALS - A REVIEW

2.1 Current Rehabilitation Trends in New Zealand Gold Mines.. 1

2.2 Potential Limitations For Rehabilitation of Tailings and Waste Materials........................... 5

2.2.1 CHEMICAL PROPERTIES.
 2.2.1.1 ACIDITY... 8
 2.2.1.2 ALKALINITY.. 10
 2.2.1.3 NUTRIENT DEFICIENCIES.. 11
 2.2.1.4 SALINITY AND SODICITY... 12
 2.2.1.5 HEAVY METALS.. 13

2.2.2 MICROBIOLOGICAL PROPERTIES... 14

2.2.3 PHYSICAL PROPERTIES... 14

2.2.4 ENGINEERING PROPERTIES... 17

2.3 The Acid Generation Process.. 21

2.3.1 INTRODUCTION... 21

2.3.2 PROCESSES INVOLVED IN ACID GENERATION... 22
2.3.2.1. **ACID MINE DRAINAGE**

- a. Pyrite Oxidation
 - (i) Direct Oxidation
 - (ii) Indirect Oxidation

- b. Factors Affecting Pyrite Oxidation
 - (i) Biochemical Processes
 - (ii) Geochemical Consideration
 - (iii) pH
 - (iv) Oxygen
 - (v) Alkalinity
 - (vi) Pyrite Structural Abundance and Surface Area of Pyrite Grains
 - (vii) Temperature
 - (viii) Microenvironments

- c. Oxidation of Other Base Metal Sulphides

- d. Oxidation of Other Forms of S

2.3.2.2 **ACID CONSUMING PROCESSES**

- a. Reactions With Carbonates

- b. Reactions With Aluminosilicates and Other Silicates

- c. Other Reactions
 - (i) Gypsum
 - (ii) Jarosite

2.3.2.3. **RELEASE OF HEAVY METALS**

- a. Potential Release

- b. Actual Release

2.4 **Geochemical Testwork - Assessment of Acid Forming Potential**

2.4.1. **STATIC TESTS**

- 2.2.1.1 **NETT ACID PRODUCTION POTENTIAL (NAPP)**
- 2.4.1.2. **NETT ACID GENERATION (NAG)**
- 2.4.1.3. **ACID NEUTRALISING CAPACITY (ANC)**
2.4.2 KINETIC TESTS.. 37

2.5 Possible Remediation Strategies.. 38

2.5.1 PREVENTING EXPOSURE OF MATERIAL WITH SERIOUS LIMITATIONS FOR PLANT GROWTH................. 38

2.5.1.1 AVOIDING EXPOSURE OF UNFAVOURABLE MATERIAL... 38
2.5.1.2 REDUCING THE AFFECTED AREA... 39
2.5.1.3 DISPOSAL UNDER WATER.. 39
2.5.1.4 DRY (SOIL/CLAY/PLASTIC) COVERS.................................. 39

2.5.2 OPTIONS FOR AMENDING MATERIALS TO PROVIDE A PLANT GROWTH MEDIUM... 40

2.5.2.1 pH CONTROL... 40
2.5.2.2 BACTERICIDES.. 41
2.5.2.3 WATER MANAGEMENT... 44
2.5.2.4 ADDITION OF INERT MINERAL WASTE AMENDMENTS.... 45
2.5.2.5 CHEMICALS WITH POTENTIAL FOR HEAVY METAL REMEDIATION... 45
2.5.2.6 SURROGATE TOPSOIL MATERIALS.. 46

2.5.3 SELECTING TOLERANT SPECIES... 48

2.5.3.1 PLANT SPECIES TOLERANT TO LOW pH CONDITIONS..... 49
a. Overseas Work.. 49
b. New Zealand Work... 54

2.5.3.2 SELECTION OF HEAVY METAL TOLERANT SPECIES..... 56
a. Characteristic Flora.. 56
 (i) Selenium Flora.. 57
 (ii) Serpentine Flora... 57
 (iii) Zinc Floras.. 58
b. Metal-tolerant Plants... 58

2.5.3.3 SALT TOLERANT PLANTS.. 59
CHAPTER 3.0 -

THE MARTHA MINE: PROJECT DESCRIPTION, REHABILITATION REQUIREMENTS AND FORMER TESTWORK

3.1 Project Description..61

3.1.1 PROJECT LOCATION..61

3.1.2 METEOROLOGY...64

3.1.3 THE MARTHA HILL PROJECT...65

3.2 Rehabilitation Requirements...67

3.2.1 BASELINE STUDIES OF EXISTING SOILS AT THE WASTE DISPOSAL SITE.........67

3.2.2 FINAL REHABILITATION REQUIREMENTS...67

3.3 Geochemical Testwork and Plant Growth Potential of Waste Types.......................68

3.3.1 WASTE TYPES PRODUCED..68

3.3.2 GEOCHEMICAL TESTWORK...69

3.3.2.1 UNOXIDISED WASTE..70

a. Acid Producing Potential..73
 (i) Baseline Studies..70
 (ii) Ongoing Testwork...73

b. Tailings...73

 a. Baseline Studies (1986)..73
 (i) Acid Generation..73
 (ii) Leachate Production...74
 (iii) Cyanide Degradation...76
 (iv) Sorption Capacity of the Tailings..76

 b. Ongoing Testwork (1995)..77
 (i) Acid Generation Potential...77
 (ii) Cyanide Degradation...78
3.3.3 EARLY TRIALS REGARDING PLANT GROWTH POTENTIAL ON WASTE AND TAILINGS

3.3.3.1 PHYSICAL PROPERTIES OF WASTE TYPES
 a. Texture ... 79
 b. Moisture Retention 80
 c. Bulk Density, Porosity 80
 d. Soil Structure 81

3.3.3.2 CHEMICAL PROPERTIES OF WASTE TYPES 81

3.3.3.3 POT TRIALS 83

3.3.3.4 FIELD TRIALS 84

3.3.4 REHABILITATION OF THE TAILINGS DAM EMBANKMENT (BUND) 89

3.4 Soil Formation Rates and Nutrient Losses on Tailings Trial Plots 91

3.5 Comparison of Old Tailings With Recent Tailings 93

3.6 Assessment of Tailings and Oxidised Waste as Horticultural Plant Growth Media .. 95

3.7 Grass Growth On Blue Rock Exposed On The Pit Slopes 96

CHAPTER 4 -

METHODOLOGY ... 98

4.1 Introduction ... 98

 4.1.1 UNOXIDISED PIT SLOPE TRIAL 98

 4.1.2 TAILINGS TRIALS 103

4.2 Methodology ... 108

 4.2.1 BLUE ROCK TRIAL 108

 4.2.2 TAILINGS TRIALS 114
CHAPTER 5:0 -

RESULTS AND DISCUSSION .. 122

5.1 Unoxidised Rock Trial... 122

5.1.1 NATIVE PLANT TRIAL... 122
5.1.1.1 SPECIES SURVIVAL RATE OF THE NATIVE PLANTS........... 122
5.1.1.2 EFFECT OF TREATMENT ON SPECIES SURVIVAL RATE... 124

5.1.2 GROWTH MEASUREMENTS OF CORTADERIA TOETOE GROWTH... 125

5.1.3 GRASS TRIAL.. 126

5.1.3.1 Soil Analyses 1993.. 127
5.1.3.2 Soil Analyses 1994.. 129

a. Bulk Density... 130
b. pH.. 131
c. Exchangeable Calcium... 132
d. Exchangeable Magnesium... 134
e. Exchangeable Potassium... 135
f. Exchangeable Sodium... 135
g. CEC. and Base Saturation %... 137
h. Carbon and Nitrogen Status... 138
i. Phosphate and Sulphur.. 141
j. Metals Analyses... 143
 (i) Essential Nutrients.. 143
 (ii) Non-Essential Elements... 145

5.1.4 SOIL TESTS WITHIN THE BOREHOLES.. 151

5.1.5 SUMMARY AND CONCLUSIONS... 153
5.2 Tailings Trials...156

5.2.1 TAILINGS AND COMPOST ANALYSES.........................156

5.2.2 GRASS TRIAL RESULTS AND DISCUSSION......................157

5.2.2.1 DRY MATTER YIELDS..157

5.2.2.2 HERBAGE ANALYSES, OCTOBER 1993..........................159

5.2.2.3 SOIL TESTS, DECEMBER 1994.................................164

5.2.2.4 POSSIBLE REASONS FOR YIELD DIFFERENCES
 BETWEEN TREATMENTS..165

5.2.2.5 CHEMICAL CHANGES IN THE TAILINGS PLOTS
 OVER 22 MONTHS..167
 a. pH..168
 b. Olsen P...169
 c. Sulphate..170
 d. Exchangeable Potassium.......................................170
 e. Exchangeable Calcium..171

5.2.2.6 POSSIBLE REASONS FOR REDUCED CLOVER STRIKE ON
 UNAMENDED TAILINGS...172

5.2.3 NATIVE PLANT TRIAL..175

5.2.3.1 TREATMENT DIFFERENCES.......................................175

5.2.3.2 SPECIES DIFFERENCES...177

5.2.4 SUMMARY AND CONCLUSIONS.......................................178
CHAPTER 6.0 -

REHABILITATION PLANNING AND MODELLING OF OPTIONS FOR MARTHA TAILINGS

6.1 A Rehabilitation Planning Process

6.2 A Predictive Model For Martha Tailings Rehabilitation
 6.2.1 Assumptions
 6.2.2 The Model

6.3 Options For Martha Hill Tailings Rehabilitation and Cost Implications

6.4 Discussion

6.5 Summary and Conclusions

CHAPTER 7.0 -

SUMMARY AND RECOMMENDATIONS

7.1 Summary

7.2 Recommendations
 7.2.1 CONSIDERATIONS REGARDING REVEGETATION RESEARCH OF ACID PRODUCING SLOPES
 7.2.2 RECOMMENDATIONS FOR TAILINGS REHABILITATION

REFERENCES
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Influence Of Angle Of Slope On Revegetation And Erosion</td>
<td>19</td>
</tr>
<tr>
<td>3.1</td>
<td>Location of Waihi and the Martha Mine</td>
<td>63</td>
</tr>
<tr>
<td>3.2</td>
<td>Martha Hill Project and Site Layout</td>
<td>66</td>
</tr>
<tr>
<td>3.3</td>
<td>Total Annual Dry Matter Production 1985-90, Union Hill Trials (Gregg et al 1990)</td>
<td>86</td>
</tr>
<tr>
<td>3.4</td>
<td>Total Annual Dry Matter Production 1985-86, Martha Hill Site (Gregg et al 1990)</td>
<td>87</td>
</tr>
<tr>
<td>3.5</td>
<td>Soil Formation in the Upper 75 mm of a Union Hill Tailings Plot</td>
<td>91</td>
</tr>
<tr>
<td>4.1</td>
<td>Martha Mine and Native Plant Trial Area</td>
<td>100</td>
</tr>
<tr>
<td>4.2</td>
<td>Air Track Drills With North Wall in the Background (Sept 1994)</td>
<td>110</td>
</tr>
<tr>
<td>4.3</td>
<td>Planting the North Wall (April 1993)</td>
<td>110</td>
</tr>
<tr>
<td>4.4</td>
<td>Typical Planting Sequence and Method for North Wall Treatments</td>
<td>112</td>
</tr>
<tr>
<td>4.5</td>
<td>Filling the Ponds With Tailings (April 1992)</td>
<td>114</td>
</tr>
<tr>
<td>4.6</td>
<td>Both Ponds Filled With Tailings (September 1992)</td>
<td>115</td>
</tr>
<tr>
<td>4.7</td>
<td>Marking Out the Tailings Plots (April 1993)</td>
<td>116</td>
</tr>
<tr>
<td>4.8</td>
<td>Applying Compost to the Tailings Plots (May 1993)</td>
<td>117</td>
</tr>
<tr>
<td>4.9</td>
<td>Tailings Pasture Plots (Oct 93)</td>
<td>118</td>
</tr>
<tr>
<td>4.10</td>
<td>Dimensions of Plant Root Volume and Planting Hole For Native Plants on Tailings Trial</td>
<td>120</td>
</tr>
<tr>
<td>4.11</td>
<td>Native Plant Trial Plots on Tailings (Oct 93)</td>
<td>121</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Patchy Grass Survival on Treatment A Area of the North Wall Trial (Dec 1994)</td>
<td>126</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Calcite Veining on the North Wall (Aug 1994)</td>
<td>128</td>
</tr>
<tr>
<td>5.1.3</td>
<td>General View of Treatment Area A (Dec 1994)</td>
<td>133</td>
</tr>
<tr>
<td>5.1.4</td>
<td>General View of Treatment Area E (Dec 1994)</td>
<td>133</td>
</tr>
<tr>
<td>5.1.5</td>
<td>Gypsum Precipitation (Aug 1994)</td>
<td>136</td>
</tr>
<tr>
<td>5.1.6</td>
<td>Colour Differences Between Areas Supporting and Not Supporting Grass Growth (Jan 1995)</td>
<td>140</td>
</tr>
<tr>
<td>5.1.7</td>
<td>Total Aluminium Versus pH For All Treatments</td>
<td>147</td>
</tr>
<tr>
<td>5.1.8</td>
<td>Exchangeable Aluminium Versus pH For All Treatments</td>
<td>148</td>
</tr>
</tbody>
</table>
5.1.9 Total Manganese Versus pH For All Treatments.............................148
5.1.10 Total Zinc Versus pH For All Treatments....................................149
5.1.11 Total Copper Versus pH For All Treatments..................................149
5.1.12 Total Nickel Versus pH For All Treatments..................................150
5.2.1 Clover Dominance in the Compost Amended Tailings Plots
Compared to Unamended Plots (Oct 93)..172
6.1 Rehabilitation Planning Process For Gold Mine Tailings and Waste
Materials..185
6.2 Position of Existing Decant Pond in Relation to the Proposed
Tailings Lake Area...187
LIST OF TABLES.

2.1 Possible Chemical Alternatives For Heavy Metal Contaminated Soils. 45
2.2 Species With Some Tolerance to Acid... 52
3.1 Seasonal Distribution of Rainfall and Variability............................... 64
3.2 Rain Days (More than 1 mm/day) From 1898 to 1989 in Waihi................. 64
3.3 Levels of Selected Parameters Observed in Column Leachate From
Unoxidised Rock... 71
3.4 Sulphate Release Rates From Unoxidised Rock...................................... 72
3.5 Estimated Composition of Tailings Seepage.. 75
3.6 Chemical Properties of Tailings and Waste Rock................................. 81
3.7 DTPA Extractable Micro-nutrients in Tailings and Waste Material........ 82
3.8 Comparative Pasture Dry Matter Yield Results Off Restored
Oxidised Waste and an Adjacent Control Area..................................... 90
4.1 Environmental Tolerances Expected For the Chosen Species For the
North Wall Trial.. 103
4.2 North Wall Freshly Exposed Unoxidised Rock Analysis........................ 108
4.3 Additions of Topsoil, Lime and Fertiliser on the Blue Rock Trial........... 109
4.4 Activities Associated With Conduct of the Blue Rock Trial.................... 113
4.6 Activities Associated With Conduct of the Tailings Trials....................... 121
5.1.1 Overall Species Survival Rates on the North Wall............................ 123
5.1.2 Effect on Treatment on Survival of Native Plants.............................. 124
5.1.3 Mean Leaf Number of Cortaderia toetoe.. 125
5.1.4 Soil pH and Plant Health, North Wall, 10 November 1993.................... 127
5.1.5 Bulk Density and pH in Relation to Plant Health, North Wall............. 130
5.1.6 pH Measurements Over Various Depths on the North Wall Trial
Area, 15 March 1995... 131
5.1.7 Levels of Exchangeable Ca, Mg, K and Na and Their Ratings
According to Soil Levels... 134
5.1.8 Cation Exchange Capacities and Base Saturations For the Trial Area...
5.1.9 Levels of Organic C, TKN, NH4-N and NO3-N in Relation to Plant Health on the North Wall...
5.1.10 Levels of P and S Measured in North Wall Surface Samples...
5.1.11 Levels of Selected Essential Micronutrient Metals...
5.1.12 Levels of Selected Non-Essential Metals...
5.1.13 Results of Soil Sampling Within Boreholes...
5.2.1 Analyses of Tailings and Compost and Comparison With Ratings For NZ Soils...
5.2.2 Yield Results From the Grass Cuts...
5.2.3 Herbage Analysis of Tailings Plots With and Without a Compost Amendment...
5.2.4 Soil Test Results, December 1994...
5.2.5 Moisture Content in Tailings Plots...
5.2.6 Comparison of Tailings Chemical Analysis Prior to Grass Establishment and Following 22 Months of Pasture Establishment...
5.2.7 Overall Growth Differences Between Plants Growing in Compost Amended and Unamended Plots...
5.2.8 Species Growth Differences in Native Plants on the Tailings Plots...
6.1 Materials Quantities Required and Cost For Scenarios 1 to 5...
LIST OF APPENDICES.

2.1 A Description of Alkalinity by Example... 229
3.1 Rating For Soil Chemical Properties.. 230
3.2 Diagram of Bund in Cross Section... 231
4.1 Native Plants Used in Acid Producing Rock Trial............................. 232
4.2 Native Plants Used in Tailings Trials.. 237
4.3 Promotional Information Describing Agriform and its Analysis........... 240
4.4 Plantacote Fertiliser Analysis.. 241
5.1.1 Raw Data For Survival Of Native Plants On The Acid Rock Trial... 242
5.1.2 Raw Data For Growth Of C. Toetoe.. 244
5.1.3 Laboratory Sheets And Methods Of Analysis For North Wall Soil Tests... 249
5.2.1 Raw Data For Tailings Grass Plot Yields... 254
5.2.2 Raw Data For Tailings Native Plant Trial....................................... 255
6.1 Examples of Four Pages of the Model.. 259
6.2 Breakdown of Scheduled Operations, Costs and Returns For Scenarios 1 to 5... 263