Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.
Pattern Formation in a Neural Field Model

A thesis presented in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Mathematics

at Massey University, Auckland, New Zealand.

Amanda Jane Elvin

2008

Note: This thesis differs slightly from that submitted for examination in that it includes four additional references and some minor spelling and grammatical changes.
Copyright by Amanda Jane Elvin
2008
Abstract

In this thesis I study the effects of gap junctions on pattern formation in a neural field model for working memory. I review known results for the base model (the “Amari model”), then see how the results change for the “gap junction model”.

I find steady states of both models analytically and numerically, using lateral inhibition with a step firing rate function, and a decaying oscillatory coupling function with a smooth firing rate function. Steady states are homoclinic orbits to the fixed point at the origin. I also use a method of piecewise construction of solutions by deriving an ordinary differential equation from the partial integro-differential formulation of the model. Solutions are found numerically using AUTO and my own continuation code in MATLAB. Given an appropriate level of threshold, as the firing rate function steepens, the solution curve becomes discontinuous and stable homoclinic orbits no longer exist in a region of parameter space. These results have not been described previously in the literature.

Taking a phase space approach, the Amari model is written as a four-dimensional, reversible Hamiltonian system. I develop a numerical technique for finding both symmetric and asymmetric homoclinic orbits. I discover a small separate solution curve that causes the main curve to break as the firing rate function steepens and show there is a global bifurcation. The small curve and the global bifurcation have not been reported previously in the literature. Through the use of travelling fronts and construction of an Evans function, I show the existence of stable heteroclinic orbits.

I also find asymmetric steady state solutions using other numerical techniques. Various methods of determining the stability of solutions are presented, including a method of eigenvalue analysis that I develop. I then find both stable and transient Turing structures in one and two spatial dimensions, as well as a Type-I intermittency. To my knowledge, this is the first time transient Turing structures have been found in a neural field model. In the Appendix, I outline numerical integration schemes, the pseudo-arclength continuation method, and introduce the software package AUTO used throughout the thesis.
Acknowledgements

All the work in this thesis is believed to be original except where explicit reference is made in the text to other authors. This thesis is my own work except for the following contributions: the conjugate system in Chapter 5, Section 5.4 is due to Robert McLachlan; Carlo Laing developed the shooting method in Chapter 6, Section 6.4 and I modified the method in numerical implementation so that minimisation techniques would work; and in Chapter 8, Section 8.2 Carlo Laing carried out the bifurcation analysis using Fourier series, created Figure 8.9 and suggested intermittency as the cause of transient solutions.

I have had a very enjoyable postgraduate experience at Massey University with supportive and encouraging supervisors. Firstly, I would like to thank my supervisor, Dr Carlo Laing. He has been an enthusiastic and patient supervisor who was always keen to discuss ideas and made the subject come alive. I thank my second supervisor, Professor Mick Roberts, for his invaluable input and his humour. Mick’s confidence always boosted me. I would also like to express my appreciation to Professor Robert McLachlan who was very generous with his time, showing me a different approach to my work which allowed me to understand some initially perplexing results.

Many other people have also contributed to my thesis and I thank them: Robert McKibbin, Graeme Wake, Alona Ben-Tal and Winston Sweatman for their encouragement and assistance; Vivien Kirk for her interest, advice and discussions about dynamical systems theory; Bart Oldeman, my very patient AUTO genius; Bruce van Brunt for his friendship and guidance; Matt Perlmutter and Barbara Holland for their interest; and while in Canada, Axel Hutt for discussions on Turing instabilities and neural modelling, and Frances Skinner for her advice.

My fellow students Ratneesh Suri, Qing Zhang, Dion O’Neale, Sharleen Harper, Sena Galkadowite, Joanne Mann and Gang (John) Xie have provided a great sense of community. I am also very grateful to Freda Mickisch for her support and for smoothing the way.
I thank my parents, Robert and Marilyn, my brother and sister, Matthew and Victoria, and Maddie, who from a very young age was my captive audience of choice for presentation practice, for their love and support. I also wish to thank my uncle, Dr Donal Forsyth, for the inspiration. Others I thank are Deb Moran for being there, Robyn Tearle for the music, David Schwarz for his innovative perspective, Miraz Jordan for all things Apple, Lisa Williams for the movies, Carolyn Anderson, David Morgan and Jan Suckling for their friendship and support, and Shaneen Moloney for helping make everything possible.

I am grateful to Massey University for the Vice-Chancellor’s scholarship funding, and to the Institute of Information and Mathematical Sciences and the Centre for Mathematical Biology for other financial support. I also thank the New Zealand Mathematical Society and the Royal Society of New Zealand for providing financial support for research-related travel.
Contents

Abstract ii
Acknowledgements iv
List of Figures ix
List of Tables xiii

1 Introduction 1
 1.1 Neurons and working memory 1
 1.2 The literature 6
 1.3 Derivation of the gap junction model 15
 1.4 Thesis outline 17

2 Finding steady states analytically 21
 2.1 Introduction 21
 2.2 Amari model 24
 2.3 Gap junction model 33
 2.4 Conclusion 43

3 Finding steady states numerically 45
 3.1 Introduction 45
 3.2 Amari model 47
 3.3 Gap junction model 55
 3.4 Conclusion 60

4 Piecewise construction of solutions 62
 4.1 Introduction 62
 4.2 Amari model 62
4.3 Gap junction model ... 76
4.4 Conclusion .. 89

5 A Hamiltonian approach 90
5.1 Introduction .. 90
5.2 Hamiltonian structure of the system 92
5.3 Finding homoclinic orbits 97
5.4 Global bifurcation .. 107
5.5 Travelling fronts .. 124
5.6 Conclusion .. 131

6 Finding asymmetric solutions 134
6.1 Introduction .. 134
6.2 Numerical integration 135
6.3 Newton’s method .. 135
6.4 A shooting method .. 137
6.5 Piecewise construction 146
6.6 Conclusion .. 148

7 Stability analysis ... 149
7.1 Introduction .. 149
7.2 Amari’s linear stability analysis 150
7.3 Pinto and Ermentrout’s stability analysis 157
7.4 Evans function analysis 164
7.5 Eigenvalue analysis .. 173
7.6 Numerical integration 176
7.7 Conclusion .. 176

8 Turing structures ... 178
8.1 Introduction .. 178
8.2 One spatial dimension 179
8.3 Two spatial dimensions 195
8.4 Conclusion .. 196

Appendix .. 200

Bibliography .. 207
List of Figures

1.1 Schematic of a neuron .. 2
1.2 Schematic of a chemical synapse 3
1.3 Schematic of a gap junction 4
1.4 Heaviside firing rate function and Mexican hat coupling function .. 7
1.5 Example of a nonsaturating piecewise linear firing rate function .. 9
1.6 Smooth firing rate function and decaying oscillatory coupling function 10
1.7 Connection of two resistors in a circuit 16

2.1 Shifted Heaviside $f(u)$ and Mexican hat coupling function .. 23
2.2 Spatially uniform steady states of the system with shifted Heaviside $f(u)$ 25
2.3 Structure of a symmetric single-bump solution 26
2.4 Finding steady state solutions using the integral of $w(x)$.. 28
2.5 Two single-bump solutions 28
2.6 Piecewise construction of a single-bump solution with step $f(u)$ 31
2.7 Single-bump steady states for $\kappa^2 = 0.05$ 37
2.8 Bifurcation analysis of single-bump solutions of the gap junction model 39

3.1 Smooth firing rate function and decaying oscillatory coupling function 46
3.2 Steady state solutions found with numerical integration .. 49
3.3 Solution curves for $r = 0.095$ 51
3.4 Solution curves for $r = 0.110$ 53
3.5 Solution curves for $r = 0.110$ with the L^2-norm on the y-axis 53
3.6 Solution curves when $r = 0.090$ 54
3.7 Solution curves when $r = 0.085$ 54
3.8 A “dimple” single-bump solution for $b = 0.87378$ and $r = 0.085$ 55
3.9 Steady states of the gap junction model .. 56
3.10 Solution curves of the gap junction model with $\kappa^2 = 0.05$ 59
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Coefficients for steady states with step $f(u)$</td>
<td>66</td>
</tr>
<tr>
<td>4.2</td>
<td>Coefficients for steady states for $\alpha = 2$ in piecewise linear $f(u)$</td>
<td>73</td>
</tr>
<tr>
<td>4.3</td>
<td>Coefficients for steady states for $\alpha = 3$ in piecewise linear $f(u)$</td>
<td>73</td>
</tr>
<tr>
<td>4.4</td>
<td>Coefficients for steady states with $\kappa^2 = 0.05$ and step $f(u)$</td>
<td>79</td>
</tr>
<tr>
<td>4.5</td>
<td>Coefficients for steady states with $\kappa^2 = 0.05$ and piecewise linear $f(u)$</td>
<td>87</td>
</tr>
</tbody>
</table>