Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Effectiveness of UV-C irradiation on controlling growth of

L. monocytogenes on fresh cut broccoli

A thesis submitted in partial fulfilment of the requirements for the
degree of Doctor of Philosophy in Food Technology
at Massey University, New Zealand.

Gayani Gamage

2015
ABSTRACT

Increasing numbers of foodborne disease outbreaks related to fresh produce are reported every year from around the world. This increase is partly attributed to increased consumption of fresh produce such as whole and fresh cut fruits and vegetables. Fresh produce can be contaminated at any time from field to table, providing channels for transmitting foodborne pathogens to humans. Studies have reported that human pathogens such as *Listeria monocytogenes*, which can grow and survive under refrigerated conditions, cannot be adequately removed by washing with commonly used chemical disinfectants. Consumers prefer products that have not been treated chemically, especially fresh products that are consumed without further processing before consumption. Physical treatments such as UV-C irradiation have shown promising effects in improving storage life, nutritional quality, and microbial safety of fresh produce. UV-C irradiation is beneficial due to its direct germicidal effect, and could possibly induce defence responses in fresh produce which may further improve quality and safety. However, direct germicidal effects would be limited by the uneven surfaces of fresh produce, with risk of survival of pathogens in areas shaded from direct UV exposure. It is also not clear whether induced defence related changes would be sufficient to offer any significant protection against human pathogens. Therefore, this study focused on evaluating the efficacy of postharvest UV-C irradiation to control growth of *L. monocytogenes* inoculated onto fresh cut broccoli at different times after UV-C treatment, and possible mechanisms of induced resistance.

UV-C irradiation supplied at a total dose of 5.2 kJ m\(^{-2}\) significantly reduced growth of *L. monocytogenes* inoculated onto fresh cut broccoli 6 h and 24 h after treatment, whereas a 2.6 kJ m\(^{-2}\) treatment was suppressive only 24 h after treatment. Neither dose of UV-C adversely affected the quality of fresh cut broccoli compared to untreated broccoli. The *in vitro* study of extracts of UV-C treated broccoli extracted 24 h after UV-C treatment showed that certain extracts were indeed suppressive against *L. monocytogenes*. Aqueous extract of UV-C treated broccoli extracted 24 h after treatment suppressed growth of *L. monocytogenes* compared to extracts of untreated broccoli. Phytochemical analysis of broccoli extracts by LC-HRMS revealed that UV-C irradiation significantly increased production of particular
phytochemical compounds. Compound identifications included raphanusamic acid, salicylic acid-β-glucoside, p-coumaryl quinic acid, all of which have been previously reported as being involved in plant defence. Therefore, UV-C irradiation appears to induce defence responses which may be effective systemically, and therefore not critically dependent on achieving an effective sanitising dose of UV-C across the entire broccoli surface. This may alleviate concerns about relying on uniform illumination for anticipated benefits.

Overall, these results suggest that treatment of broccoli with UV-C irradiation should lead to immediate microbial mortality, and a longer-lasting induction of defence systems in the tissues, which would suppress growth of pathogens such as *L. monocytogenes* if the tissue became contaminated during processing. Therefore this treatment can be recommended as a hurdle technology to improve microbial safety of packaged fresh produce.
ACKNOWLEDGEMENT

It is my pleasure to express my sincere gratitude and respect to my main supervisor, Prof. Julian Heyes for his support, guidance, encouragement, and invaluable feedback regarding my research and thesis writing. Thank you so much for being patience, friendly, and confident with my work. I am grateful to my co-supervisors Dr. Jason Wargent and Dr. Jon Palmer for their useful suggestions, valuable guidance, and encouragement during my studies.

I would like to thank Massey University for awarding me a Doctoral Scholarship to complete my PhD research. I am also thankful to Sue Nicholson, Peter Jeffery, Anne-Marie Jackson, Julia Good, John Sykes and Steve Glasgow for their technical support during my research work. I would like to thank Tony Meggie at Plant and Food Research who kindly analysed broccoli extracts for my study. I am also grateful to Kapiti Green Ltd, Levin, for donating broccoli throughout my research. Without their help, I won’t be able to successfully complete my study. Thank you so much.

I would like to thank my colleagues in Fresh Technologies and all other friends who have been with me even at hard times of my life and for encouraging me during this tough journey.

Finally, I would like to thank my family, my husband, daughter, and Jason who always encouraged me and supported me throughout my studies and provided all the comfort with patience. I am grateful to my mother, brother and his family for their moral support and encouragement to complete my study.
Table of Contents

ABSTRACT ... I
ACKNOWLEDGEMENT ... III
LIST OF FIGURES .. XI
LIST OF TABLES ... XIII
LIST OF ABBREVIATIONS .. XV

1 INTRODUCTION .. 1
 1.1 Background .. 1
 1.2 Fresh produce and human pathogens ... 2
 1.2.1 Severity of foodborne illnesses related to fresh produce 3
 1.2.2 Common foodborne illnesses caused by human pathogens 4
 1.2.2.1 Salmonellosis ... 4
 1.2.2.2 Escherichia coli ... 6
 1.2.2.3 Listeriosis ... 6
 1.2.3 Significance of L. monocytogenes .. 7
 1.2.3.1 Low temperature and low pH adaptation 7
 1.2.3.2 Biofilm formation and quorum sensing 8
 1.3 Factors affecting pathogen contamination of fresh produce 9
 1.3.1 Sources of contamination of fresh produce 9
 1.3.2 Surface-pathogen interaction .. 11
 1.4 Controlling Listeria monocytogenes on fresh produce 13
 1.5 Different postharvest techniques studied to control human pathogens on fresh produce ... 14
 1.5.1 Hormesis ... 15
 1.5.2 Hurdle Technology .. 15
 1.5.3 Postharvest treatments .. 16
 1.5.3.1 Chemical treatment ... 16
 1.5.3.2 Heat treatment .. 17
 1.5.3.3 Modified atmosphere packaging 18
 1.5.3.4 Irradiation .. 18
 1.5.3.5 Pressure treatment .. 19
 1.6 Role of UV-C irradiation as a postharvest treatment in horticulture 20
 1.6.1 Uses of ultraviolet radiation in the horticulture industry 20
1.6.2 UV hormesis in horticultural crops ... 21
1.6.3 Effect of UV-C irradiation on fresh produce .. 21

1.7 UV-C radiation and its implications ... 23
1.7.1 UV irradiation .. 23
1.7.2 Effect of UV radiation on humans, biology and environment 24
1.7.3 Effect of UV radiation on plant cells .. 25
1.7.4 Microbial inactivation mechanism of UV light ... 25

1.8 UV induced protection against plant pathogens ... 27

1.9 Regulating the application of UV irradiation in the food industry 28

1.10 Broccoli; a potential vegetable for research .. 28
1.10.1 Secondary metabolites of broccoli .. 29
1.10.2 Measuring quality attributes of broccoli ... 31

1.11 Impact of UV-C irradiation on broccoli after harvest 31
1.11.1 Quality and storage life of broccoli .. 31
1.11.2 Antioxidant activity .. 32
1.11.3 Gene expression: senescence and defence ... 33
 1.11.3.1 Chlorophyll degradation ... 33
 1.11.3.2 Cell membrane degradation ... 34
 1.11.3.3 Pathogenesis related responses ... 35

1.12 Aim and research objectives ... 36

2 EFFECT OF UV-C IRRADIATION ON PHYSIOLOGICAL PROPERTIES OF FRESH CUT BROCCOLI ... 39

2.1 Introduction .. 39

2.2 Materials and Methods ... 40
 2.2.1 Plant materials .. 40
 2.2.2 Storage containers (Clam shells) ... 40
 2.2.3 UV-C treatment ... 40
 2.2.3.1 Measuring the UV-C dose inside the UV box 41
 2.2.4 Weight loss ... 42
 2.2.5 Colour change ... 42
 2.2.6 Statistical analysis .. 42

2.3 Results and Discussion ... 42
 2.3.1 Weight loss ... 42
 2.3.2 Colour change ... 43
2.3.2.1 Lightness .. 43
2.3.2.2 Hue ... 44
2.3.2.3 Chroma ... 45
2.3.3 Colour change in fresh-cut broccoli over time..................................... 45
2.4 Conclusion .. 48

3 EFFECT OF UV-C IRRADIATION ON GROWTH AND SURVIVAL OF POST INOCULATED LISTERIA MONOCYTOGENES .. 51
3.1 Introduction ... 51
3.2 Materials and method ... 52
 3.2.1 Important notice ... 52
 3.2.2 L. monocytogenes culture ... 53
 3.2.3 Microbial assay .. 53
 3.2.4 Enumerating L. monocytogenes cells ... 53
 3.2.5 Enumerating mesophilic bacteria cells... 53
 3.2.6 Statistical analysis .. 54
3.3 Results and Discussion .. 54
 3.3.1 Growth and survival of L. monocytogenes ... 54
 3.3.2 Mesophilic bacteria growth .. 57
 3.3.3 Correlation between growth of L. monocytogenes and mesophilic bacteria .. 59
3.4 Conclusion .. 61

4 ANTIMICROBIAL EFFECT OF EXTRACTS OF UV-C TREATED BROCCOLI .. 63
4.1 Introduction ... 63
4.2 Materials and Methods ... 64
 4.2.1 Sample preparation .. 64
 4.2.2 L. monocytogenes culture ... 64
 4.2.3 Solvents .. 64
 4.2.4 Plant material extraction .. 64
 4.2.5 Microbial assay .. 66
 4.2.5.1 Establishing L. monocytogenes growth curve 66
 4.2.5.2 DMSO concentration assay .. 66
 4.2.5.3 L. monocytogenes assay .. 66
 4.2.5.4 Experimental schedule .. 67
4.2.6 Statistical analysis .. 67

4.3 Results and Discussion .. 68
4.3.1 Weight of crude extracts from different solvents 68
4.3.2 Establishing *L. monocytogenes* growth curve 69
4.3.3 Effect of UV-C treated broccoli extract in controlling the growth of *L.
 monocytogenes* ... 71
 4.3.3.1 Aqueous extract .. 72
 4.3.3.2 Butanol extract .. 73
 4.3.3.3 Methanol extract ... 74
 4.3.3.4 Hexane extract .. 75
4.3.4 Suppressive activity of broccoli extracts .. 78

4.4 Conclusion .. 80

5 EFFECT OF UV-C IRRADIATION ON PHYTOCHEMICAL
 COMPOSITION OF FRESH-CUT BROCCOLI ... 81
5.1 Introduction ... 81
5.2 Materials and Method ... 82
 5.2.1 Sample preparation ... 82
 5.2.1.1 Plant material .. 82
 5.2.1.2 GC-MS analysis ... 82
 5.2.1.3 LC-HRMS analysis .. 83
 5.2.2 Analysis of phytochemical compounds in UV-C treated broccoli 83
 5.2.2.1 GC-MS analysis ... 83
 5.2.2.2 LC-HRMS analysis .. 83
 5.2.2.3 LC-HRMS data analysis ... 83
 5.2.2.4 Tentative compound identification ... 84
 5.2.3 Statistical analysis ... 84
5.3 Results and Discussion .. 84
 5.3.1 GC-MS analysis .. 84
 5.3.2 LC-HRMS analysis ... 93
 5.3.2.1 UV-C regulation of phytochemicals ... 93
 5.3.2.2 Glucosinolates in UV-C treated fresh cut broccoli 98
5.4 Conclusion .. 101

6 OVERALL DISCUSSION ... 103
6.1 Introduction ... 103
6.2 Summary of results ... 103
 6.2.1 UV-C irradiation and human pathogen control....................... 104
 6.2.2 Suggested inactivation mechanisms of post-inoculated *L.
 monocytogenes* by UV-C treatment.. 105
 6.2.3 Induced resistance of fresh cut broccoli by UV-C irradiation 107
6.3 Practical implications of the research 110
6.4 Future work ... 111
 6.4.1 Identifying volatile compounds in UV-C treated broccoli.......... 111
 6.4.2 Effect of UV-C on attachment and morphology of *L. monocytogenes* 111
 6.4.3 Antimicrobial activity of putative compounds......................... 111
 6.4.4 Gene expression associated with UV-C 111
 6.4.5 Commercial adaptive research ... 112
6.5 Conclusion .. 112

7 REFERENCES .. 115
LIST OF FIGURES

Figure 1.1 Solar spectrum .. 24
Figure 1.2 Conceptual mechanisms of inactivating microorganisms on fresh produce by UV-C irradiation. .. 27
Figure 1.3 General structure of glucosinolates. .. 30
Figure 1.4 Dimensions of colour (Source: http://2.bp.blogspot.com/) 32
Figure 2.1 UV-C dosage mapping inside the UV chamber ... 41
Figure 2.2 % weight loss of UV-C treated fresh cut broccoli during storage at 15 °C .. 44
Figure 2.3 Visual colour change of fresh-cut broccoli during storage at 15 °C 46
Figure 2.4 Colour change in UV-C treated fresh cut broccoli during storage at 15 °C .. 47
Figure 2.5 Hypothesised Type I chlorophyll breakdown pathways in green plant tissues.. 48
Figure 3.1 Growth of *L. monocytogenes* on UV-C treated fresh cut broccoli branchlets ... 56
Figure 3.2 Growth of *L. monocytogenes* inoculated onto untreated and UV-C treated fresh cut broccoli .. 58
Figure 3.3 Growth of total mesophilic bacteria on untreated and UV-C treated fresh cut broccoli .. 60
Figure 3.4 Correlation between growth of *L. monocytogenes* and total mesophilic count.. 61
Figure 4.1 Extraction procedure of broccoli using different solvents 65
Figure 4.2 Diagram showing the arrangement of aqueous extracts from treatments in a 96-microwell plate .. 67
Figure 4.3 Growth curve of *L. monocytogenes* at 30 °C ... 70
Figure 4.4 Effect of different concentrations of DMSO on growth of *L. monocytogenes* at 30 °C .. 70
Figure 4.5 Growth curve of *L. monocytogenes* during third rep. of broccoli extract assays...72

Figure 4.6 Growth suppression of *L. monocytogenes* by aqueous extracts of UV-C treated broccoli...73

Figure 4.7 Growth suppression of *L. monocytogenes* by butanol extract of UV-C treated broccoli...74

Figure 4.8 Growth suppression of *L. monocytogenes* by 10% methanol extract of UV-C treated broccoli...75

Figure 4.9 Growth suppression of *L. monocytogenes* by hexane extract of UV-C treated broccoli...76

Figure 5.1 Principal component analysis (PCA) of 33 compounds found in the GC-MS analysis ..85

Figure 5.2 Principal component analysis (PCA) of 33 compounds found in the GC-MS analysis of extracts (80% ethanol) of broccoli treated with (5.2 kJm\(^{-2}\)) and untreated broccoli extracts ..86

Figure 5.3 Loading plot of the 33 compounds found in the extracts (80% ethanol) of UV-C treated (5.2 kJm\(^{-2}\)) and untreated broccoli ..86

Figure 5.4 Average peak area (log scale) of compounds identified by GC-MS analysis ...91

Figure 5.5 Treatment dependent differences of compounds determined by *t*-test between two treatments ..95

Figure 5.6 Chemical compounds increased by UV-C irradiation at 5.2 kJm\(^{-2}\)100

Figure 5.7 Glucosinolates identified by LC-HRMS in UV-C treated (5.2 kJm\(^{-2}\)) and untreated broccoli ..101

Figure 6.1 Conceptual model of prior UV-C treatment inducing defence responses in fresh cut broccoli ..107
LIST OF TABLES

Table 1.1 Outbreaks linked to fresh produce from 2005 to 2011 5
Table 2.1 Percentage lightness increase by UV-C treatment 46
Table 3.1 Correlation coefficient values and their \(P \) values associated with growth of \(L. \) monocytogenes and mesophilic bacteria counts .. 61
Table 4.1 Experiment schedule of extracting UV-C treated and untreated broccoli . 68
Table 4.2 Weight (mg) of different solvent-crude extracts according to time of extraction ... 69
Table 4.3 Effect of UV-C treated broccoli extracts on growth of \(L. \) monocytogenes 77
Table 5.1 List of compounds identified by GC-MS analysis in UV-C treated and untreated fresh cut broccoli .. 89
Table 5.2 Compounds identified by GC-MS with largest changes in peak area between UV-C treated (5.2 kJm\(^{-2}\)) and untreated, at 24 h after treatment 91
Table 5.3 Compounds identified by GC-MS with largest changes in peak area 92
Table 5.4 LC-HRMS identification of chemical compounds that were increased by UV-C irradiation at 5.2 kJm\(^{-2}\) .. 97
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFU</td>
<td>Colony forming units</td>
</tr>
<tr>
<td>CSLM</td>
<td>Confocal scanning laser microscopy</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>GC-MS</td>
<td>Gas chromatography - mass spectrometry</td>
</tr>
<tr>
<td>GLSs</td>
<td>Glucosinolates</td>
</tr>
<tr>
<td>H</td>
<td>Hours</td>
</tr>
<tr>
<td>ITC</td>
<td>Isothiocyanate</td>
</tr>
<tr>
<td>JA</td>
<td>Jasmonic acid</td>
</tr>
<tr>
<td>kJ</td>
<td>Kilo joules</td>
</tr>
<tr>
<td>LC-HRMS</td>
<td>Liquid chromatography - high resolution mass spectrometry</td>
</tr>
<tr>
<td>OD</td>
<td>Optical density</td>
</tr>
<tr>
<td>PAL</td>
<td>Phenylalanine ammonia-lyase</td>
</tr>
<tr>
<td>PCA</td>
<td>Principal component analysis</td>
</tr>
<tr>
<td>RT</td>
<td>Retention time</td>
</tr>
<tr>
<td>RTE</td>
<td>Ready - to – eat</td>
</tr>
<tr>
<td>SA</td>
<td>Salicylic acid</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning electron microscopy</td>
</tr>
<tr>
<td>SOD</td>
<td>Superoxide dismutase</td>
</tr>
<tr>
<td>TSB</td>
<td>Tryptic soy broth</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
</tbody>
</table>