CONSUMER MARKET RESEARCH FOR OPTIMIZATION OF
AN EXTRUDED SNACK PRODUCT AND PROCESS
FOR THE INDONESIAN MARKET

A THESIS
PRESENTED IN PARTIAL FULFILMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF TECHNOLOGY IN FOOD TECHNOLOGY
AT MASSEY UNIVERSITY - NEW ZEALAND

YULY INDRAWATI
1996
ABSTRACT

A coextruded snack based on corn, defatted soya flour and Indonesian ingredients (rice and/or tapioca) was developed for Indonesian consumers, particularly to fit into the young adult niche market. Market and consumer research was carried out through collecting primary and secondary data and the results were utilized in the formulation of the extruded snack. Information about the snack market situation in Indonesia and consumer attitude towards extruded snack products indicated that there is an opportunity for success for a new-western style snack (extruded snack) in Indonesia and the key for success are product awareness and product attributes, notably crispiness and flavour.

The snack base was manufactured using a co-rotating and intermeshing twin screw extruder (Clextral BC-21) with a constant feed rate and optimized by changing ingredients and extrusion conditions set by a constrained mixture design scheme (Echip computer software). The effect of the extrusion conditions and ingredients on the functional, physical properties of the snack product was also studied in this project. The product cost was also optimized with a constraint of no more than Rp. 4000 per kg (NZ$ 2.70) finish snack product.

The study on the extrudate properties showed that an increase in rice flour increased moisture content (MC), Water Absorption Index (WAI), Nitrogen Solubility Index (NSI) and Breaking Strength (BS), while an increase in soya reduced the protein solubility and the extrudate became brownish. Consumer acceptability was mainly affected by the rice content, soya content and temperature in the last section (T4).

Specific Mechanical Energy (SME), an extrusion parameter, was calculated directly through torque measurements. Higher SME indicated higher energy used in the extrusion process, thus more starch degradation and protein denaturation occurred, producing extrudates with lower BS. Sensory evaluation showed that snacks with lower BS (a crispier product), higher L^* and b^* colour (light brownish yellow colour) had a higher acceptance.
The most preferred snack base was made from 28% defatted soya flour, 12% rice flour, 59.6% corn grits and 0.4% baking soda. These ingredients were processed in a twin screw extruder with a feed rate of 4.47 kg/hr. The four barrel temperature zones were set at 40°C, 80°C, 115°C and 140°C, respectively and 150 ml/hr of water was pumped to the barrel. The screw speed was set at 300 rpm. The snack acceptance was improved by coating the samples with flavours and the most preferred flavour determined by a sensory panel was a spicy flavour (Ethican - QZ 02346; Quest International).

The optimum product formulation was then tested in a larger scale consumer test in Indonesia. The results from the final product testing showed that the developed snack was accepted by the target consumers. However some improvements of the product in terms of oil content and product stickiness in the mouth are still necessary. The developed product had a better acceptance over the snacks already in the market in terms of nutritional image, crispiness, product appearance and main ingredients.

In addition a feasibility study on snack production in a single screw extruder was carried out and functional and physical properties of the resulting extrudates were compared with those produced using the twin screw extruder. The comparison of WAI, Glass transition temperature (Tg), NSI and BS of snacks manufactured using a single (Lallesse, Universal single screw extruder) and a twin screw extruder (Clextral BC21) showed that the extent of molecules degradation was lower in the single screw extruder than in the twin screw extruder. Sensory properties also indicated that the twin screw extrudate was crisper and suited to the consumers' preference than the single screw extrudate.

The developed product could be produced commercially either using a twin screw extruder or a single screw extruder, depending on the available equipment, although it was recognized that the snack manufactured using the twin screw extruder had a higher preference compared to those produced using the single screw extruder.
DEDICATION

to my parent, Mr. and Mrs. Harminto,
my sister and brothers, Daili, Ibnu and Ardian
for their understanding and encouragement throughout my course.

Make the best use of your possessions and capabilities to gain your goal;
and accept the limits of the situation.

It is THE WAY IT IS, therefore LET IT GO.
ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my chief supervisor, Dr. Osvaldo H Campanella and my second supervisor, Ms. Carol Pound for their valuable guidance, advice and encouragement provided throughout the project.

This project was financially sponsored by NZ Seed Bank Ltd. and Quest International Australasia Ltd., I express my sincere appreciation for their assistance. Special thanks are extended to Mr. Bill J Torrey, Mr. Robert Coulson, Mr. Jonathan Cameron and Ms. Judy Newell for their help and understanding.

I wish to thank Mr. W H Jones, Dr. Ajay Shah, Mr. Patrick Li, Mr. Wally Ostrowskyj, Mr. Karl Zuber for their assistance in the extrusion process; Mr. Peter Nuboer, Mr. Kelvin Hawkes, Ir. FX Eko Sudarminto for their useful consumer information.

I would also like to thank the Flavour and ingredient companies; Quest International, NZ Ltd., Bush Boake Allen, NZ Ltd., Haarmann & Reimer NZ, and NZ Dairy Board, NZ who provided flavouring samples in this project.

Many people in New Zealand and in Indonesia have contributed their cooperations either directly or indirectly during this study, I would like to thank to them, in particular to:

- The staff of Department of Food Technology, Massey University, especially Mr. Garry Radford, Mr. Alistair Young, Mr. Byron McKillop, Ms. Liza Duizer, Ms. Lynley Drummond, Mr. Mike Sahayam, Ms. June Latham and Mr. Steve Glassgow.
- The staff and students of Faculty Science and Technology, University of Western Sydney for their assistance during the single screw extrusion trials, especially to Asse.Prof. Jim Hourigan and Mr. John Connaughton.
- The staff and students of University of Widya Kartika and University of 17 Agustus, Surabaya for their help and cooperation during the research in Indonesia, especially Dr. J. Soewono, Ms. L. Birowo, Ir. I.G.A. Ari Agung.
- Indonesia consumers who participated in the product testing.
- My fellow graduates and friends in Palmerston North, Surabaya and Sydney, especially Ms. Saw Sze Chia, Ms. B. Noppon, Ir. T. Simatupang, Dr. S. Govindasamy, Ir. Pt A Ariyanti, Ms. Indrijati and Ms. Saw Peck Cheng.
TABLE OF CONTENTS

ABSTRACT ... i

ACKNOWLEDGEMENT .. iv

TABLE OF CONTENTS ... v

LIST OF TABLES .. xiii

LIST OF FIGURES ... xvii

LIST OF APPENDICES ... xix

SYMBOLES AND ABBREVIATIONS ... xxii

PUBLICATION ... xxiii

CHAPTER 1 INTRODUCTION ... 1
 1.1 Product development ... 1
 1.2 Consumer involvement in the product development process ... 2
 1.3 Why an extruded snack was selected as the prototype product
 for the Indonesian market ... 5
 1.4 Aim and objectives .. 6
 1.5 Project constraints .. 7
 1.6 Project strategy ... 8

CHAPTER 2 LITERATURE REVIEW ... 10
 2.1 Extrusion .. 10
 2.1.1 Definition ... 10
 2.1.2 Extruder design .. 11
 2.1.2.1 Single screw extruder ... 13
2.1.2.2 Twin screw extruder 15
2.1.3 Application .. 16

2.2 The functional properties of raw materials used in extrusion cooking for the manufacture of a snack product 18
 2.2.1 Structure forming agents 20
 2.2.2 Dispersion agents or fillers 21
 2.2.3 Plasticisers and lubricants 22
 2.2.4 Nucleants for gas bubble formation 23
 2.2.5 Flavouring agents 24
 2.2.6 Colouring agents 25

2.3 Raw material properties changes during extrusion process for an expanded snack .. 26
 2.3.1 Starch degradation 26
 2.3.2 Protein denaturation 29
 2.3.3 Protein-carbohydrate interaction in the extrusion process .. 31
 2.3.4 Rheology properties 32
 2.3.5 Specific Mechanical Energy 33

2.4 Extrudate properties assessment 34
 2.4.1 Water Absorption Index (WAI) and Water Solubility Index (WSI) .. 34
 2.4.2 Nitrogen Solubility Index (NSI) 36
 2.4.3 Glass transition temperature (Tg) 36
 2.4.4 Texture measurement 37
 2.4.5 Colour measurement 38

2.5 CONSUMER AND MARKET RESEARCH 39
 2.5.1 Data collection in market and consumer research 40
 2.5.1.1 Research objectives 40
 2.5.1.2 Types of data collection 40
 2.5.1.3 Research implementation 42
 2.5.1.4 Data interpretation 42
 2.5.2 Product attributes and product position in the market ... 43
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5.3</td>
<td>Sensory techniques</td>
<td>43</td>
</tr>
<tr>
<td>2.5.3.1</td>
<td>Techniques for measuring sensory response</td>
<td>44</td>
</tr>
<tr>
<td>2.5.3.2</td>
<td>Consumer panel</td>
<td>45</td>
</tr>
<tr>
<td>2.5.3.3</td>
<td>Environment</td>
<td>46</td>
</tr>
<tr>
<td>2.5.3.4</td>
<td>Correlation between sensory evaluation with objective measurements</td>
<td>47</td>
</tr>
<tr>
<td>2.6</td>
<td>Product optimization</td>
<td>48</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Linear programming</td>
<td>50</td>
</tr>
<tr>
<td>2.6.1.1</td>
<td>Definition and application of linear programming in product optimization</td>
<td>50</td>
</tr>
<tr>
<td>2.6.1.2</td>
<td>The structure of linear programming in formulation</td>
<td>50</td>
</tr>
<tr>
<td>2.6.2</td>
<td>Mixture experimental design</td>
<td>51</td>
</tr>
<tr>
<td>2.6.2.1</td>
<td>General mixture experiment</td>
<td>51</td>
</tr>
<tr>
<td>2.6.2.2</td>
<td>Structure of mixture experimental design</td>
<td>52</td>
</tr>
<tr>
<td>2.6.3</td>
<td>Echip experimental design program</td>
<td>52</td>
</tr>
</tbody>
</table>

CHAPTER 3

PRELIMINARY STUDY OF SNACK DEVELOPMENT

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Snack market situation</td>
<td>54</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Trend of snack market in the world</td>
<td>54</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Snack market in Indonesia</td>
<td>57</td>
</tr>
<tr>
<td>3.2</td>
<td>Consumer study for expanded snacks</td>
<td>65</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Aim of the consumer study</td>
<td>65</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Focus group and consumer study evaluation</td>
<td>66</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Consumer attitude towards an expanded snack</td>
<td>67</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Important product attributes of an extruded snack</td>
<td>69</td>
</tr>
<tr>
<td>3.2.4.1</td>
<td>Important product attributes considered when purchase an extruded snack</td>
<td>70</td>
</tr>
</tbody>
</table>
3.2.4.2 Important product attributes considered when an extruded snack is consumed ... 73

3.2.5 Product concept testing for extruded snack 76
3.2.5.1 Participants' attitudes towards raw materials 76
3.2.5.2 Buying attitudes towards product concept 79

3.3 Conclusion of the preliminary study 80

CHAPTER 4 MATERIALS AND METHODS 81

4.1 Materials .. 81
4.1.1 Raw materials 81
4.1.2 Flavour ingredients 81
4.1.3 Ingredient mixture preparation 82
4.1.4 Storage of extrudates before analysis 82

4.2 Extruder operation 82
4.2.1 Twin screw extruder 82
4.2.2 Single screw extruder 84

4.3 Methods .. 86
4.3.1 Raw materials 86
4.3.1.1 Particle size distribution 86
4.3.1.2 Moisture content 86
4.3.1.3 Water absorption index and water solubility index 87
4.3.1.4 Nitrogen solubility index 88

4.3.2 Extrudates 90
4.3.2.1 Functional properties analysis 90
4.3.2.1.1 Moisture content 90
4.3.2.1.2 Water absorption index and water solubility index 91
4.3.2.1.3 Nitrogen solubility index 91
4.3.2.1.4 Glass transition temperature 91
CHAPTER 5

STUDY OF PROPERTIES OF THE EXTRUDED SNACK BASE MANUFACTURED USING A TWIN SCREW EXTRUDER

5.1 Introduction .. 106
5.2 Preliminary product cost optimization 107
5.3 Experimental design for the extruded snack base formulation .. 108
5.4 Analysis of raw materials and extrudate 111
5.4.1 Raw materials 111
5.4.2 Extrudates .. 112
5.4.2.1 Functional properties analysis 112
5.4.2.2 Physical properties analysis 112
5.4.2.3 Acceptability test 112
5.4.2.4 Specific mechanical energy 115
5.5 Results: effect of ingredients and process conditions on the extrudate characteristics 115
5.5.1 Functional properties .. 115
 5.5.1.1 Moisture Content (MC) 115
 5.5.1.2 Water Absorption Index (WAI) 118
 5.5.1.3 Water solubility index (WSI) 119
 5.5.1.4 Nitrogen solubility index (NSI) 121
5.5.2 Specific mechanical energy (SME) 122
5.5.3 Physical properties ... 124
 5.5.3.1 Breaking strength 124
 5.5.3.2 Colour measurement 124
5.5 Acceptability ... 125
5.6 The relationship between specific mechanical energy and extrudate physicochemical properties .. 126
5.7 Correlation between consumer acceptability and extrudate physical characteristics .. 133
5.8 Conclusion .. 136

CHAPTER 6 EXTRUDED SNACK FORMULATION 138
6.1 Snack base formulation .. 139
 6.1.1 Introduction .. 139
 6.1.2 Method in obtaining the snack base formulation 139
 6.1.3 The optimum snack base formulation 139
6.2 Flavour coating formulation 141
 6.2.1 Aim .. 142
 6.2.2 Flavour development procedures 142
 6.2.2.1 Sample preparation 143
 6.2.2.2 Flavour screening method 146
6.3 Flavour development results 149
 6.3.1 First flavour screening 149
 6.3.2 Second flavour screening 149
 6.3.3 Third flavour screening 152
6.4 Conclusion .. 156
CHAPTER 7 FINAL CONSUMER PRODUCT TESTING 157

7.1. Aim of final consumer product testing 157
7.2. Procedure in testing the snack ... 157
 7.2.1 Selection of consumers and testing venue 157
 7.2.2 Sample preparation .. 158
 7.2.3 Questionnaire ... 158
 7.2.4 Data processing and analysis of results 160
7.3 Evaluation of the extruded snack concept by consumers in Indonesia ... 160
 7.3.1 Acceptance of soy as an ingredient 161
 7.3.2 Frequency of snack consumption 161
 7.3.3 Consumer expectation of extruded snack characteristics ... 162
7.4 Consumer acceptability of the new extrudate snack 166
7.5 Comparison with other commercial products 168
7.6 Consumer purchase intention ... 170
7.7 Price and packet size of the new extrudate snack 171
7.8 Conclusion ... 173

CHAPTER 8 COMPARISON BETWEEN SINGLE AND TWIN SCREW EXTRUDERS FOR THE MANUFACTURE OF THE SNACK PRODUCT 175

8.1 Introduction ... 175
8.2 Single screw extrudate study ... 176
 8.2.1 Experimental conditions used on the single screw extruder ... 176
 8.2.2 Extrudates analysis .. 177
 8.2.2.1 Functional and physical properties analysis ... 177
 8.2.2.2 Sensory evaluation .. 177
8.3 Result: single screw extrudate characteristics .. 178
8.3.1 Effect of feed moisture and feed rate on single screw
extrudate characteristics ... 181
8.3.2 Relationship between Specific Mechanical Energy
(SME), Glass Transition Temperature (Tg) and
Breaking Strength (BS) .. 182
8.4 Comparison of extrudate characteristics produced with single
and twin screw extruders ... 184
8.5 Comparison of product preference between single screw and
twin screw extrudates .. 187
8.6 Conclusion .. 191

CHAPTER 9 OVERALL DISCUSSION AND
RECOMMENDATIONS .. 193
9.1 Introduction .. 193
9.2 Overall discussion and conclusions ... 193
 9.2.1 Market opportunity for extruded snack in Indonesia 193
 9.2.2 Application of a Design Experimental Software (Echip)
in this study .. 194
 9.2.3 Selection of extrusion cooking as an alternative process
for snack manufacture ... 195
 9.2.4 Feasibility of In-house testing in extruded snack
development .. 196
 9.2.5 The use of consumer (untrained) panellists over trained
panellists in this study ... 197
9.2 Recommendations for further study ... 198

REFERENCES ... 200

APPENDICES ... 213
LIST OF TABLES

Table 1.1 Systematic development process 2
Table 1.2 Consumer panel involvement in the product development process 5
Table 2.1 Extrusion process application 17
Table 2.2 Raw materials commonly used to produce extruded snacks 19
Table 2.3 Advantages and disadvantages of central location and in-house test environment 47
Table 3.1 Extruded snack available in the Surabaya market 60
Table 3.2 Modern snacks available in Surabaya. Classified according to brand, flavour, suppliers, size and consumer price. December 1995 62
Table 3.3 Frequency of consumption of corn extruded snack 67
Table 3.4 Types of preferable flavour 69
Table 3.5 Important product attributes when purchase an extruded snack 70
Table 3.6 Degree of importance on each characteristic when purchase an extruded snack 71
Table 3.7 Important product attributes when an extruded snack is consumed 73
Table 3.8 Product attributes when snack is consumed ranked by the degree of importance 74
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.9</td>
<td>Extruded snack product concept</td>
<td>76</td>
</tr>
<tr>
<td>3.10</td>
<td>Preference to include soya bean as an ingredient of an extruded snack</td>
<td>77</td>
</tr>
<tr>
<td>3.11</td>
<td>Preference of samples and raw materials estimated by the participants</td>
<td>78</td>
</tr>
<tr>
<td>3.12</td>
<td>Willingness to buy the new product</td>
<td>79</td>
</tr>
<tr>
<td>4.1</td>
<td>Seven point verbal hedonic scale</td>
<td>97</td>
</tr>
<tr>
<td>4.2</td>
<td>Example of a just right scale</td>
<td>99</td>
</tr>
<tr>
<td>4.3</td>
<td>Cost of ingredients used in the snack formulation</td>
<td>102</td>
</tr>
<tr>
<td>4.4</td>
<td>Decision variables in the snack base formulation</td>
<td>103</td>
</tr>
<tr>
<td>5.1</td>
<td>Model for cost minimization</td>
<td>107</td>
</tr>
<tr>
<td>5.2</td>
<td>Solution on cost minimization model using linear programming</td>
<td>108</td>
</tr>
<tr>
<td>5.3</td>
<td>Raw materials used in the study</td>
<td>109</td>
</tr>
<tr>
<td>5.4</td>
<td>Transformation of mixture variables percentages into ratios</td>
<td>110</td>
</tr>
<tr>
<td>5.5</td>
<td>Variables used in the experimental design</td>
<td>110</td>
</tr>
<tr>
<td>5.6</td>
<td>Equation coefficient and variables which affected the extrudate's moisture content (MC)</td>
<td>116</td>
</tr>
<tr>
<td>5.7</td>
<td>Equation of coefficient and variables which affected the extrudate's water solubility index (WSI)</td>
<td>119</td>
</tr>
<tr>
<td>5.8</td>
<td>Coefficient of the model and variables which affected the extrudate's nitrogen solubility index (NSI)</td>
<td>121</td>
</tr>
</tbody>
</table>
Table 5.9 Variables and coefficient equation which affected the SME
Table 6.1 The most acceptable snack base formulation and process
Table 6.2 Flavour samples used in the flavour development
Table 6.3 The adjustment of flavouring agent for the snack formulation and the total product cost
Table 6.4 Flavour grouping and order of preference
Table 6.5 The product preference on each flavour group
Table 6.6 Ranking preference test among corn, savory, barbecue and spicy flavours
Table 7.1 Frequency of any snack products consumption by extruded snack eater and non extruded snack eater
Table 7.2 Favourable characteristics expected by consumers
Table 7.3 Snacks existing in the Indonesian market ranked by order of preference
Table 7.4 Unfavourable characteristics found by consumers on snacks currently in the market
Table 7.5 Developed snack acceptability tested by itself
Table 7.6 Results of the blind test to determine the snack preference
Table 7.7 Buying frequency for the new product
Table 7.8 Price recommendation from consumers who answered that they would buy the product, when compared with similar product's price that they are currently purchasing
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.9</td>
<td>Packet size recommended by the consumers who were willing to buy the product, in comparison</td>
<td>173</td>
</tr>
<tr>
<td></td>
<td>with similar product packets that they are currently purchasing.</td>
<td></td>
</tr>
<tr>
<td>8.1</td>
<td>Ingredients for formulation 5 (consumer test formulation).</td>
<td>176</td>
</tr>
<tr>
<td>8.2</td>
<td>Different extrudate texture.</td>
<td>178</td>
</tr>
<tr>
<td>8.3</td>
<td>Analysis on functional and physical properties of single screw extrudate.</td>
<td>179</td>
</tr>
<tr>
<td>8.4</td>
<td>F-values to study the effect of variables (ingredients moisture and feed rate) on the</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>physical and functional properties of extrudates using ANOVA.</td>
<td></td>
</tr>
<tr>
<td>8.5</td>
<td>Snack characteristics produced on single screw and twin screw extruders.</td>
<td>185</td>
</tr>
<tr>
<td>8.6</td>
<td>Comparison snack preference and crispiness between single screw and twin screw extrudates.</td>
<td>188</td>
</tr>
<tr>
<td>8.7</td>
<td>Relationship between degree of crispiness (just right test) and texture preference (hedonic</td>
<td>190</td>
</tr>
<tr>
<td></td>
<td>test) for snacks produced with the single screw extruder.</td>
<td></td>
</tr>
<tr>
<td>8.8</td>
<td>Relationship between degree of crispiness (just right test) and texture preference (hedonic</td>
<td>190</td>
</tr>
<tr>
<td></td>
<td>test) for snacks produced with the twin screw extruder.</td>
<td></td>
</tr>
<tr>
<td>A4.1</td>
<td>Preliminary trials.</td>
<td>222</td>
</tr>
<tr>
<td>A4.2</td>
<td>Size distribution of corn meal used in preliminary trials.</td>
<td>224</td>
</tr>
<tr>
<td>A4.3</td>
<td>Analysis of extrudates produced during the preliminary trials.</td>
<td>226</td>
</tr>
<tr>
<td>Figure number</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>Figure 1.1</td>
<td>Schematic diagram of the project strategy</td>
<td>9</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Snack consumption per capita and per year in various countries. 1993</td>
<td>55</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Stages of maturity for snack food markets in several countries in 1993</td>
<td>55</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Several commercial snack products available in the market</td>
<td>64</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>Twin screw extruder (Clextral BC-21, France)</td>
<td>83</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Schematic diagram of the screw configuration used in the snack development</td>
<td>84</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>Lalesse universal single screw extruder (87-780)</td>
<td>85</td>
</tr>
<tr>
<td>Figure 4.4</td>
<td>A typical curve of obtained during DSC measurements</td>
<td>92</td>
</tr>
<tr>
<td>Figure 4.5</td>
<td>Chisel probe for testing extrudate samples</td>
<td>94</td>
</tr>
<tr>
<td>Figure 5.1</td>
<td>Samples delivered to the panellist</td>
<td>114</td>
</tr>
<tr>
<td>Figure 5.2</td>
<td>Trend of the relationship between breaking strength and specific mechanical energy</td>
<td>127</td>
</tr>
<tr>
<td>Figure 5.3</td>
<td>Trend of the relationship between Tg and SME</td>
<td>128</td>
</tr>
<tr>
<td>Figure 5.4</td>
<td>Trend of the relationship between Tg and SME for selected formulations</td>
<td>129</td>
</tr>
<tr>
<td>Figure 5.5</td>
<td>Trend of the relationship between WAI and SME</td>
<td>130</td>
</tr>
<tr>
<td>Figure 5.6</td>
<td>Trend of the relationship between WSI and SME</td>
<td>131</td>
</tr>
</tbody>
</table>
Figure 5.7 Trend of the relationship between NSI and SME 131
Figure 5.8 Examples of trend on a single formulation 132
Figure 5.9 Relationship between consumer acceptability and extrudate breaking strength .. 134
Figure 5.10 Correlation between consumer acceptability and colour measurements ... 135
Figure 6.1 Stages on the extruded snack formulation 138
Figure 6.2 Acceptability of the snack base 140
Figure 6.3 Flavour screening stages .. 147
Figure 6.4 Six different flavoured snack samples 153
Figure 7.1 Samples evaluated in the first section of the final product testing ... 159
Figure 8.1 Correlation between breaking strength (BS) and SME 183
Figure 8.2 Correlation between Tg and SME 183
Figure 8.3 Correlation between BS and Tg 184
Figure 8.4 Samples manufactured using twin screw extruder (1) and single screw extruder (2) .. 188
Figure A4.1 Diagram of extrudate’s structure 224
LIST OF APPENDICES

Appendix 3.1 Questionnaire format used in the focus group discussion.
 Preliminary consumer study of expanded snack 213

Appendix 3.2 Important characteristics considered when purchasing an
 extruded snack ... 217

Appendix 3.3 Important characteristics considered when consuming an
 extruded snack ... 218

Appendix 3.4 Familiarity with corn snacks 219

Appendix 3.5 Occasions to consume the snack product 220

Appendix 4.1 Preliminary production trials 221

Appendix 5.1 Experimental conditions for the 31 trials (based on the
 experimental design) ... 228

Appendix 5.2 Ingredients particle size distribution 230

Appendix 5.3 Analysis of functional properties of ingredients mixtures 231

Appendix 5.4 Format of general testing information and questionnaire
 sheet .. 232

Appendix 5.5 Randomized samples code for acceptability test 233

Appendix 5.6 Ratio on line scale acceptability test for snack base
 formulation ... 235

Appendix 5.7 Extrudate functional and physical properties analysis 238
Appendix 5.8 Coefficients of estimated quadratic models for the following parameters: moisture content (MC), water absorption index (WAI), water solubility index (WSI) and nitrogen solubility index (NSI) .. 240

Appendix 5.9 Coefficients of estimated quadratic models for the following parameters: breaking strength (BS), L^* colour, a^* colour, b^* colour, ΔE^* colour and acceptability (accept.) 241

Appendix 6.1 Analysis of variance (ANOVA) and Tukey's honestly significant different test used for the snack basic formulation acceptability ... 242

Appendix 6.2 Cost of snack extrudate for each formulation 243

Appendix 6.3 Ranking test questionnaire used in the second stage of flavour screening ... 244

Appendix 6.4 Questionnaire for the preference product test used in the flavour development .. 245

Appendix 6.5 Questionnaire for the ranking test used in the flavour development ... 246

Appendix 6.6 Calculation of product cost ... 247

Appendix 6.7 Results of preference ranking test on each flavour group 250

Appendix 6.8 Re-evaluation test for the chicken and barbecue flavours 251

Appendix 6.9 Panellists' responds for each sample 252

Appendix 6.10 Analysis of variance and Tukey's honestly significant different test for each product attribute .. 255

Appendix 7.1 Questionnaire form for final consumer product testing written in Bahasa Indonesia .. 258
Appendix 7.2 Questionnaire form for final consumer product testing written in English ... 263

Appendix 7.3 Summary of results from the final product testing 268

Appendix 8.1 Ingredients for formulation 5 and processing conditions used on the single screw extruder experiment 276

Appendix 8.2 Formulation 5 manufactured using the twin screw extruder at different process conditions 277

Appendix 8.3 Format of questionnaire for sensory evaluation 278

Appendix 8.4 Panellists’ respond on sensory evaluation between twin screw extruder and single screw extruder 279

Appendix 8.5 Relationship between degree of crispiness (just right test) versus texture preference (hedonic test) on single screw and on twin screw extruders .. 280
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSE</td>
<td>Twin Screw Extruder</td>
</tr>
<tr>
<td>SSE</td>
<td>Single Screw Extruder</td>
</tr>
<tr>
<td>RSE</td>
<td>Reverse Screw Element</td>
</tr>
<tr>
<td>T₁</td>
<td>Temperature at the first zone in the twin screw extruder</td>
</tr>
<tr>
<td>T₂</td>
<td>Temperature at the second zone in the twin screw extruder</td>
</tr>
<tr>
<td>T₃</td>
<td>Temperature at the third zone in the twin screw extruder</td>
</tr>
<tr>
<td>T₄</td>
<td>Temperature at the forth/last zone in the twin screw extruder</td>
</tr>
<tr>
<td>MC</td>
<td>Moisture Content</td>
</tr>
<tr>
<td>w/w</td>
<td>Weight per weight basis</td>
</tr>
<tr>
<td>wwb</td>
<td>Weight by wet basis</td>
</tr>
<tr>
<td>WAI</td>
<td>Water Absorption Index</td>
</tr>
<tr>
<td>WSI</td>
<td>Water Solubility Index</td>
</tr>
<tr>
<td>NSI</td>
<td>Nitrogen Solubility Index</td>
</tr>
<tr>
<td>Tg</td>
<td>Glass transition temperature</td>
</tr>
<tr>
<td>BS</td>
<td>Breaking Strength</td>
</tr>
<tr>
<td>SME</td>
<td>Specific Mechanical Energy</td>
</tr>
</tbody>
</table>

All other abbreviations are standard chemical, mathematical or country symbols.
PUBLICATION