Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
PRACTICAL BUFFER SIZING TECHNIQUES UNDER DRUM-BUFFER-ROPE:
DEVELOPMENT OF A MODEL AND FUZZY LOGIC IMPLEMENTATION

A thesis presented in partial fulfilment of the requirements for the degree of Master of Technology in Manufacturing and Industrial Technology at Massey University

Jeffrey Lawrence Foote
1996
In Memory of Louis Borman

(1913 - 1994)
Acknowledgements

I would like to sincerely thank Dr. Simon Hurley for his expert know-how, patience and support during the last two years. His infectious enthusiasm for constraints and belief that research is about solving real problems has helped in many ways to see this project to completion.

I would also like to sincerely thank Dr. Adrian Evans for his technical expertise and many insightful and helpful comments, not to mention his sense of humour that often been appreciated.

Without their help, encouragement and excellent supervision, this research would have not been possible.

I would also like to thank Chatu Lokuge, for his expert programming skills and Togar Simatupang for his cheerful optimism.

Thanks are also due to Massey University for their financial support; the Department of Production Technology for its excellent study facilities; Prof. Bob Hodgson for his support that enabled me to travel to the University of Houston, Texas; and fellow postgraduate students for conversation and friendship.

For flatmates who put up with me during the final stages of this project and friends for their interest, never-ending support and encouragement.

Finally, I would to thank my parents for their on-going support during my time as a student.
Abstract

A production buffer is a queue of work waiting in front of a manufacturing work-station for processing. The buffer protects the work-station utilisation from variability in the flow of work from feeding work-stations. Effective buffer management is critical to the smooth flow of work and the maintenance of a predictable output rate.

An effective buffer management policy must address three questions that characterise the buffer management problem (BMP):

1. What objective function to use?
2. Where to locate buffers?
3. What is the appropriate buffer sizes?

Despite being simple to describe, to date few practical heuristics for buffer management have been developed by researchers. The approach of researchers is to place a buffer of work in front of every work-station, whatever the objective function is being used. The answer to the third issue is then typically found by applying a combinational optimisation technique. The practical benefits of locating buffers throughout a manufacturing facility and the use of complex combinatorial optimisation methods to solve over-stylised problems are questionable. As a consequence of this "academic" approach, research results are rarely used by practitioners who still rely on intuition to solve the BMP.

The production application of the Theory of Constraints, Drum-Buffer-Rope (DBR), provides exact answers to the first and second questions. Throughput (or output rate) is adopted as the objective function. Buffers locations are limited in front of the constraint work-station, in assembly areas using constraint processed parts and in the shipping area.

Buffer size is a open issue in a DBR implementation and directly influences the time-based competitiveness of a manufacturing facility. Too small a buffer can result in the constraint
work-station being starved and due date promises missed; too large a buffer can result in a longer than necessary lead times.

Buffer sizing advice is vague and non-specific and relies heavily on managerial understanding and experience. This can reduce the effectiveness of DBR implementations and greatly increases the implementation lead time as intuition rarely guarantees the best possible outcome for a given set of circumstances.

In today’s competitive and increasing globalised economy, a structured approach that sizes buffers in an effective and implementable manner is likely to yield significant benefits over a traditional DBR implementation. This thesis explores the subject of practical buffer sizing in a DBR environment.

A fuzzy logic approach is proposed and used to size buffers in a simulated DBR environment. The effectiveness of the technique is assessed and contrasted with a simple and commonly used buffer sizing heuristic.

Simulation results demonstrate that fuzzy logic effectively sizes buffers and is likely to provide a satisfactory answer to the third question of the BMP: what is the appropriate buffer size.
Table of Contents

ACKNOWLEDGEMENTS
iii

ABSTRACT
iv

1. INTRODUCTION
1

1.1 Research Background
2

1.2 Manufacturing System Behaviour
4

1.3 Effective Scheduling
5
 1.3.1 Just-In-Time (JIT) Systems
6
 1.3.2 Drum-Buffer-Rope (DBR) Systems
7

1.4 Buffer Management Problem (BMP)
9

1.5 Purpose of the Research
10

1.6 Methodology
11

1.7 Thesis Structure
12

2. BUFFER MANAGEMENT SUBJECT REVIEW
14

2.1 Introduction
15

2.2 Production Buffers
16

2.3 The Buffer Management Problem
17
 2.3.1 The Objective Function
18
 2.3.2 Formulation of the Buffer Management Problem
19
 2.3.3 Generic Design Issues
21

2.4 Solution Approaches
22
8.3.1 Further Simplification of the Manufacturing Model 152
8.3.2 Testing the Validity of Manufacturing Model Simplifications 153
8.3.3 Processing Time Distributions 154
8.3.4 Delay Time Order Statistic 154
8.3.5 Practical Significance 155

8.4 The Role of Protective Capacity 155

8.5 Buffer Management Technologies 156
 8.5.1 Constraint Focused Quality Improvement 156
 8.5.2 Expediting Tardy Work-Orders 157
 8.5.3 The "How To" of Buffer Management 157

8.6 Quality in Research 159

9. CONCLUSIONS 160

9.1 Introduction 161

9.2 The Buffer Management Problem (BMP) 161

9.3 Results 162

9.4 Publications from this Research 163

9.5 Contribution of this Research 164
REFERENCES

APPENDICES

APPENDIX A: TRIANGULAR PROCESSING TIME DISTRIBUTION CALCULATIONS
175

APPENDIX B: VERIFICATION OF INPUT PROBABILITY DISTRIBUTIONS
177

APPENDIX C: SIMULATION CODE
180
List of Figures

Figure Number

2.1 Example Manufacturing Facility 33
2.2 Buffer Profile 37
2.3 The Three Regions of a Buffer 38
3.1 Balancing Significance with Precision 44
3.2 Graded Membership Function for Excellent Due Date Performance 45
3.3 Boolean Membership Function for Excellent Due Date Performance 47
3.4 Fuzzy Term Set Due Date Performance 50
3.5 Domain and Overlap of Fuzzy Term Set Due Date Performance 51
3.6 Triangular Membership Function 52
3.7 Sigmoid Membership Function 53
3.8 Gaussian Membership Function 53
4.1 Mean Protective Capacity (MPC) Term Set 69
4.2 The Effect of Up-stream Variability (UV) Term Set 69
4.3 The Appropriate Buffer Size (BS) Term Set 70
4.4 Effect of MPC on Buffer Size 76
4.5 Effect of UV on Buffer Size 76
4.6 The Fuzzy Buffer Sizing Model 78

xiii
4.7 Worked Example of Fuzzy Buffer Sizing Solution
(MPC=30% and cv = 0.07)

5.1 A Full DBR Implementation

5.2 A Simplified DBR Implementation

5.3 A Typical Lognormal Distribution

5.4 Gamma Distribution (μ = 10; σ = 1)

5.5 Gamma Distribution (μ = 10; σ = 3)

5.6 Gamma Distribution (μ = 10; σ = 5)

5.7 Effect of Changing cv on the Mode of the Gamma Distribution

5.8 Specifying Processing Time Distributions

5.9 Triangular (7.68, 10, 12.62) Distribution

5.10 Triangular (7.68, 10, 17.17) Distribution

5.11 Time Series Plot of 100 Delay Times

5.12 Histogram of Randomly Sampled Delay Times

6.1 Computer Simulation Logic

6.2 Auto-correlation Function of Mean Cycle Time (MPC = 30% and cv = 0.07)

6.3 Data Collection

6.4 Mean Utilisation of Work-station One

6.5 Mean Utilisation of Work-station Two

6.6 Mean Utilisation of Work-station Three

6.7 Mean Utilisation of Work-station Four
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.8</td>
<td>Mean Utilisation of Work-station Five</td>
<td>129</td>
</tr>
<tr>
<td>6.9</td>
<td>Mean Delay Time</td>
<td>129</td>
</tr>
<tr>
<td>6.10</td>
<td>Mean Utilisation of Work-station Three</td>
<td>130</td>
</tr>
<tr>
<td>6.11</td>
<td>Mean Utilisation of Work-station Four</td>
<td>130</td>
</tr>
<tr>
<td>6.12</td>
<td>Mean Utilisation of Work-station Five</td>
<td>131</td>
</tr>
<tr>
<td>6.13</td>
<td>Mean Utilisation of Work-station Six</td>
<td>131</td>
</tr>
<tr>
<td>6.14</td>
<td>Mean Cycle-Time</td>
<td>132</td>
</tr>
<tr>
<td>6.15</td>
<td>Effect of Mean Protective Capacity On 95% Delay Time Quartile</td>
<td>135</td>
</tr>
<tr>
<td>6.16</td>
<td>Effect of cv on 95% Delay Time Quartile</td>
<td>136</td>
</tr>
<tr>
<td>7.1</td>
<td>Buffer Effectiveness of the Fuzzy Logic Model</td>
<td>142</td>
</tr>
<tr>
<td>7.2</td>
<td>Buffer Effectiveness of Umble’s Heuristic</td>
<td>143</td>
</tr>
<tr>
<td>8.1</td>
<td>Buffer Size is too Small</td>
<td>151</td>
</tr>
<tr>
<td>B.1</td>
<td>Processing Times</td>
<td>179</td>
</tr>
</tbody>
</table>
List of Tables

<table>
<thead>
<tr>
<th>Table Number</th>
<th>Table Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Competitive Dimensions</td>
<td>3</td>
</tr>
<tr>
<td>2.1</td>
<td>Objective Functions Used in the BMP</td>
<td>18</td>
</tr>
<tr>
<td>3.1</td>
<td>Expert Interpretation of the Due Date Metric</td>
<td>45</td>
</tr>
<tr>
<td>4.1</td>
<td>Fuzzy Term Set Overlap</td>
<td>72</td>
</tr>
<tr>
<td>5.1</td>
<td>Mathematical Properties of the Gamma Distribution</td>
<td>90</td>
</tr>
<tr>
<td>5.2</td>
<td>Mathematical Properties of the Triangular Distribution</td>
<td>94</td>
</tr>
<tr>
<td>6.1</td>
<td>Input Distributions</td>
<td>110</td>
</tr>
<tr>
<td>6.2</td>
<td>Nomenclature</td>
<td>111</td>
</tr>
<tr>
<td>6.3</td>
<td>Example Final Assembly Schedule</td>
<td>112</td>
</tr>
<tr>
<td>6.4</td>
<td>Routing and Processing Information by Product Type</td>
<td>114</td>
</tr>
<tr>
<td>6.5</td>
<td>Relative Precision Achieved with 10 Replications</td>
<td>133</td>
</tr>
<tr>
<td>6.6</td>
<td>3x3 Experimental Design</td>
<td>134</td>
</tr>
<tr>
<td>7.1</td>
<td>Estimated Buffer Sizes for Umble's Heuristic and Fuzzy Logic Model</td>
<td>140</td>
</tr>
<tr>
<td>7.2</td>
<td>Appropriate (95% Delay Time Quartile) Buffer Size</td>
<td>141</td>
</tr>
<tr>
<td>7.3</td>
<td>Buffer Effectiveness</td>
<td>142</td>
</tr>
<tr>
<td>7.4</td>
<td>Summary Statistics</td>
<td>143</td>
</tr>
<tr>
<td>7.5</td>
<td>Simulation Results</td>
<td>146</td>
</tr>
<tr>
<td>B.1</td>
<td>Tally Sheet for Product Type</td>
<td>177</td>
</tr>
</tbody>
</table>