Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
STUDIES ON POSTHARVEST QUALITY OF ‘BUOI’ MANGOES DURING COLD-STORAGE

A thesis submitted in partial fulfilment of the requirements for the degree of

Master of Applied Science

in

Agricultural Engineering

at

Institute of Technology and Engineering

Massey University

Palmerston North, New Zealand

Nguyen Xuan Ha

1998
Mango (Mangifera indica L.) - King of Oriental Fruits
ABSTRACT

The objective of this thesis was to characterise the postharvest quality attributes of 'Buoi' mangoes by: (1) providing a detailed review of the literature on postharvest handling and storage of mangoes; (2) studying the effects of harvest date, storage temperature, length of storage, and postharvest treatments on postharvest quality of 'Buoi' mangoes; and (3) developing regression models for predicting postharvest quality attributes of 'Buoi' mango fruit as a function of storage temperature and length of storage.

A review of the literature showed that considerable research has been carried out during the last 20 years on several aspects of postharvest handling and storage of mangoes. The literature review included maturity assessment, ripening behaviour of mangoes at low temperature storage, and postharvest treatments for controlling diseases and disorders. Many researchers have recommended storage conditions and postharvest treatments for various mango cultivars such as 'Alphonso', 'Carabao', 'Kensington', 'Haden', 'Keitt', 'Kent' etc., however, there was a dearth of information on the storage requirements for the important cultivars grown in Vietnam.

Samples of 'Buoi' mango grown in Hoa Loc area, Cai Be District, Tien Giang Province (latitude: 10° 5', longitude: 102°), Vietnam, were harvested at commercial maturity on three harvest dates based on uniform peel colour and morphological characteristics such as size and shape and transferred to laboratory at the Postharvest Technology Institute (PHTI) in Hochiminh city. To study the effects of harvest date on mango quality, fruit samples from the three harvests were stored at 12 ± 1°C (RH 85-90%) for 25 days. At 5-day intervals, sub-samples were randomly removed from cold storage and assessed for weight loss, peel and pulp colour, soluble solids content (SSC), total acidity, flesh firmness and crushing stress, chilling injury (CI) and eating quality. Another sub-sample was assessed after 4 days ripening at 25°C. The results showed that increasing storage time led to a significant (P <
increase in weight loss, peel and pulp colour development, and incidence of chilling injury. However, both fresh firmness and crushing stress, and total acidity declined during storage. Soluble solids content and eating quality increased up to around 20 days, but declined afterwards.

Harvest date influenced weight loss, CI and fruit texture (both firmness and crushing stress), but did not affect peel and pulp colour, SSC, total acidity, and eating quality. Early harvested fruit lost more weight compared with the mid- and late harvested fruit. However, there was no significantly difference in weight loss between mid- and late harvested fruit. Up to 10 days storage, fruit texture in early harvested fruit was significant higher than in mid- and late harvested fruit, but after this period the difference disappeared. Early harvested fruit were more susceptible to CI than mid- and late harvested fruit. Compared to fruit kept in cold storage, fruit ripened at 25°C had higher SSC but were lower in total acidity. In addition, ripening fruit at 25°C increased the severity of CI.

To study the effects of storage temperature on mango quality, fruit samples from second harvest were stored at 7, 12, 17 ± 1°C (RH 85-90%), and room temperature (27°C, RH 75-85%) for 25 days. Storage temperature had a significant effect on fruit quality attributes. Increasing storage temperature led to increase in weight loss, and yellow colour development in peel and pulp tissue; however, firmness, crushing stress, total acidity and incidence of CI declined. In cold-stored fruit, soluble solids content and eating quality increased with increase in storage temperature. Storing fruit at 12°C up to 20 days and 17°C up to 15 days, respectively, maintained the quality and minimized the incidence of postharvest disorders in ‘Buoi’ mangoes. Regression models for predicting postharvest quality attributes of ‘Buoi’ mangoes as a function of storage temperature and storage time were developed, applicable for fruit storage in the range 7 - 27°C up to 15 days and 7 - 17°C up to 25 days.
To assess the effect of hot water treatment (HWT) for controlling of postharvest diseases and disorders in 'Buoi' mango, fruit samples were randomly assigned to the following treatments prior to cold storage at 12 ± 1°C (RH 85-90%): treatment 1 = fruit dipped in hot water at 52°C for 5 min; treatment 2 = fruit dipped in hot water at 52°C for 10 min; treatment 3 = fruit placed in PVC plastic bag; and treatment 4 = control (untreated) fruit. After 24 days storage, fruit were removed from cold storage and assessed for weight loss, peel and pulp colour, SSC, anthracnose, stem-end rot, shrivel and Cl. HWT at 52°C for 5 or 10 min significantly reduced the incidence of anthracnose, stem-end rot and Cl compared to fruit in plastic bag or untreated fruit. Fruit in plastic bag lost less weight than the other treatments. HWT at 52°C for 5 min was recommended for reducing the incidence of anthracnose, stem-end rot and Cl in Vietnamese ‘Buoi’ mangoes.
ACKNOWLEDGEMENTS

I would like to express my gratitude to my chief supervisor, Dr. Linus U. Opara for his valuable advice, supervision and support throughout this study. My sincere thanks are also given to Associate Prof. Cliff J Studman, my co-supervisor, for his important suggestions and kind assistance during investigation, especially his guidance at beginning of this project. My special thanks to Prof. Gavin L. Wall, Head of the Department for his permission to use Departmental fruit quality measurement equipment during my experiments in Vietnam.

I would also like to thank Prof. Le Van To, Director of Postharvest Technology Institute (PHTI), Hochiminh City, Vietnam for his useful advice and financial support during the time I carried out the experiments at his Institute.

Thanks are also due to the following who contributed to this study:

Prof. Pham Van Lang, Director of the Vietnam Institute of Agricultural Engineering, Hanoi, Vietnam for his advice and supervision during my experiments in Vietnam;

Ms. Bay, Researcher at Long Dinh Fruit Research Centre, for field assistance in obtaining fruit samples;

Mr. and Mrs. Tam, Hoa Loc area, Cai Be District, Tien Giang Province, Vietnam, for their permission to collect fruit from their commercial orchard.

My special thanks to all the staff and postgraduate students in the Department of Agricultural Engineering for their assistance and encouragement.

Finally I would like to thank NZODA for travel assistance and award of a Postgraduate Scholarship.
TABLE OF CONTENTS

ABSTRACT ... i
ACKNOWLEDGEMENTS ... iv
TABLE OF CONTENTS ... v
LIST OF TABLES ... ix
LIST OF FIGURES .. x
LIST OF ABBREVIATIONS .. xiv

CHAPTER 1 GENERAL INTRODUCTION

1.1 Introduction ... 1
1.2 Research Objectives ... 4

CHAPTER 2 LITERATURE REVIEW ON POSTHARVEST HANDLING AND STORAGE OF MANGO

2.1 Introduction .. 6
2.2 Maturity Assessment .. 8
 2.2.1 Physical parameters ... 9
 2.2.2 Chemical parameters .. 11
2.3 Harvest Method ... 13
2.4 Ripening and Senescence ... 14
 2.4.1 Respiration ... 14
 2.4.2 Physical changes ... 16
 2.4.3 Bio-chemical changes 18
 2.4.4 Indices for ripeness .. 22
2.5 Quality standards of mangoes 23
2.6 Environmental Factors Influencing Fruit Deterioration 24
 2.6.1 Temperature .. 25
 2.6.2 Relative humidity ... 26
 2.6.3 Ethylene ... 27
 2.6.4 Atmospheric composition 27
2.7 Postharvest Diseases and Disorders

2.8 Postharvest Handling Systems

2.8.1 Packinghouse operation

2.8.2 Transport

2.8.3 Packaging

2.8.4 Manipulation to prolong shelf-life

2.9 Summary and Further Researches

2.9.1 Summary

2.9.2 Further research prospects

CHAPTER 3 GENERAL MATERIALS AND METHODS

3.1 Introduction

3.2 Supply of Fruit

3.3 Measurements of Postharvest Quality Attributes

3.3.1 Weight loss

3.3.2 Skin and pulp colour

3.3.3 Fruit firmness

3.3.4 Flesh crushing stress

3.3.5 SSC

3.3.6 Total acidity

3.3.7 Diseases and disorders

3.3.8 Eating quality
CHAPTER 4 EFFECTS OF HARVEST DATE AND LENGTH OF STORAGE ON QUALITY ATTRIBUTES OF 'BUOI' MANGOES

4.1 Introduction ... 56
4.2 Experimental Design 57
4.3 Data Analysis .. 58
4.4 Results .. 58
 4.4.1 Effects of harvest date and storage duration on fruit quality 58
 4.4.2 Fruit ripening at 25°C 65
4.5 Discussion .. 68
4.6 Conclusions .. 71

CHAPTER 5 EFFECTS OF STORAGE TEMPERATURE AND LENGTH OF STORAGE ON QUALITY ATTRIBUTES OF 'BUOI' MANGOES

5.1 Introduction .. 73
5.2 Experimental Design 75
5.3 Data Analysis .. 76
5.4 Results .. 76
 5.4.1 Effects of storage temperature and length of storage on fruit quality 76
 5.4.2 Fruit ripening at 25°C 96
5.5 Discussion .. 99
5.6 Conclusions .. 101

CHAPTER 6 EFFECTS OF POSTHARVEST TREATMENTS ON QUALITY ATTRIBUTES OF 'BUOI' MANGOES

6.1 Introduction .. 103
6.2 Experimental Design 105
6.3 Data Analysis ... 105
6.4 Results .. 105
6.5 Discussion .. 110
6.6 Conclusions ... 111

CHAPTER 7 GENERAL DISCUSSION AND CONCLUSIONS

7.1 Introduction ... 112
7.2 General Discussion and Conclusions 112
 7.2.1 General Discussion 112
 7.2.2 General Conclusions 116
7.3 Recommendations for Further Research 117

REFERENCES .. 119

APPENDIX 1 .. 132

APPENDIX 2 .. 139

APPENDIX 3 .. 144

APPENDIX 4 .. 151
LIST OF TABLES

Table 2.1 Recommended storage life of mangoes without refrigeration (ISO-6660, 1993) .. 41
Table 2.2 Recommended optimum conditions for cold storage of mangoes (ISO-6660, 1993) ... 43
Table 5.1 The relationships between weight loss rate of ‘Buoi’ mangoes and storage time at different storage temperatures. 78
Table 5.2 The relationships between peel colour of ‘Buoi’ mangoes and storage time at different storage temperatures. 80
Table 5.3 The relationships between pulp colour of ‘Buoi’ mangoes and storage time at different storage temperatures. 81
Table 5.4 The relationships between flesh firmness of ‘Buoi’ mangoes and storage time at different storage temperatures. 85
Table 5.5 The relationships between crushing stress of ‘Buoi’ mangoes and storage time at different storage temperatures. 86
Table 5.6 The relationships between SSC of ‘Buoi’ mangoes and storage time at different storage temperatures. 89
Table 5.7 The relationships between total acidity of ‘Buoi’ mangoes and storage time at different storage temperatures. 91
Table 5.8 The relationships between chilling injury of ‘Buoi’ mangoes and storage time at different storage temperatures. 93
Table 5.9 The relationships between eating quality of ‘Buoi’ mangoes and storage time at different storage temperatures. 95
Table 6.1 Effects of postharvest treatments and harvest date on postharvest quality attributes of ‘Buoi’ mangoes after storage at 12°C for 24 days. ... 107
LIST OF FIGURES

Figure 1.1 Different mango cultivars in Vietnam 1
Figure 1.2 Current postharvest handling system of mangoes in Vietnam. 2
Figure 1.3 Packaging of mango fruit in local market 3
Figure 2.1 Stages of mango fruit maturity based on morphological appearance (Medlicott et al., 1988) 10
Figure 2.2 Respiration pattern of mango fruit during ripening (Krishnamurthy and Subramanyam, 1973) 16
Figure 2.3 Simplified diagram of various metabolic pathways involved in the production of pigments, volatile compounds and polyphenols (Gomez-Lim, 1997) 17
Figure 2.4 Changes in ‘Alphonso’ mango during ripening (Krishnamurthy and Subramanyam, 1973) 19
Figure 2.5 Changes of fruit firmness during mangoes ripening for three cultivars (Abu-Sarra and Abu-Goukh, 1992) 21
Figure 2.6 The influence of CO2 and O2 concentration on the firmness of ‘Kensington’ mangoes (Jordan and Smith, 1993) 28
Figure 2.7 Symptom of postharvest anthracnose disease of mangoes. 30
Figure 2.8 Standard mango package (ISFV, 1993) 39
Figure 2.9 Effect of sealed-packaging on keeping qualities of ‘Tommy Atkins’ mangoes stored for 3 weeks at 14°C and 17°C (Rodov et al., 1994) 45
Figure 2.10 Effects of sealing on keeping qualities of ‘Keitt’ mangoes (Yantarasri et al., 1995) 46
Figure 3.1 ‘Buoi’ mangoes packaged for transportation 49
Figure 3.2 Texture measurement of mango fruit using the Massey Twist Tester 51
Figure 3.3 Principle of Twist Tester (Studman and Yuwana, 1992) 52
Figure 3.4 A hand held refractometer and fruit tissue crusher 53
Figure 4.1 Weight loss rate of ‘Buoi’ mangoes during storage at 12°C (RH 85-90%) 59
Figure 4.2 Changes in peel colour of 'Buoi' mangoes during storage at 12°C (RH 85-90%) .. 60
Figure 4.3 Changes in pulp colour of 'Buoi' mangoes during storage at 12°C (RH 85-90%) .. 60
Figure 4.4 Crushing stress of 'Buoi' mangoes during storage at 12°C (RH 85-90%) .. 61
Figure 4.5 Changes in firmness of 'Buoi' mangoes during storage at 12°C (RH 85-90%) .. 61
Figure 4.6 Changes in SSC of 'Buoi' mangoes during storage at 12°C (RH 85-90%) .. 62
Figure 4.7 Changes in total acidity of 'Buoi' mangoes during storage at 12°C (RH 85-90%) .. 63
Figure 4.8 Incidence of chilling injury of 'Buoi' mangoes during storage at 12°C (RH 85-90%) .. 64
Figure 4.9 Changes in eating quality of 'Buoi' mangoes during storage at 12°C (RH 85-90%) .. 64
Figure 4.10 SSC of 'Buoi' mangoes after cold storage at 12°C and 4 days ripening at 25°C .. 66
Figure 4.11 Total acidity content of 'Buoi' mangoes after cold storage at 12°C and 4 days ripening at 25°C 66
Figure 4.12 Incidence of chilling injury of 'Buoi' mangoes after cold storage at 12°C and 4 days ripening at 25°C 67
Figure 4.13 Eating quality of 'Buoi' mangoes after cold storage at 12°C and 4 days ripening at 25°C 67
Figure 5.1 Effects of storage temperature on weight loss rate of 'Buoi' mangoes .. 77
Figure 5.2 Response surface of weight loss of 'Buoi' mangoes stored at different temperatures 78
Figure 5.3 Effects of storage temperature on peel colour of 'Buoi' mangoes .. 79
Figure 5.4 Effects of storage temperature on pulp colour of
'Buoi' mangoes 80
Figure 5.5 Peel colour of 'Buoi' mangoes after 15 days storage
at different temperatures 82
Figure 5.6 Pulp colour of 'Buoi' mangoes after 15 days storage
at different temperatures 82
Figure 5.7 Response surface of peel colour of 'Buoi' mangoes
stored at different temperatures 83
Figure 5.8 Response surface of pulp colour of 'Buoi' mangoes
stored at different temperatures 83
Figure 5.9 Effects of storage temperature on flesh firmness of
'Buoi' mangoes 84
Figure 5.10 Effects of storage temperature on crushing stress of
'Buoi' mangoes 85
Figure 5.11 Response surface of flesh firmness of 'Buoi' mangoes
stored at different temperatures 87
Figure 5.12 Response surface of crushing stress of 'Buoi' mangoes
stored at different temperatures 87
Figure 5.13 Effects of storage temperature on soluble solids content of
'Buoi' mangoes 88
Figure 5.14 Response surface of soluble solids content of 'Buoi' mangoes
stored at different temperatures 89
Figure 5.15 Effects of storage temperature on total acidity of
'Buoi' mangoes 90
Figure 5.16 Response surface of total acidity of 'Buoi' mangoes
stored at different temperatures 91
Figure 5.17 Effects of storage temperature on chilling injury of
'Buoi' mangoes 92
Figure 5.18 Response surface of chilling injury of 'Buoi' mangoes
stored at different temperatures 93
Figure 5.19 Effects of storage temperature on eating quality of
'Buoi' mangoes 94
Figure 5.20 Response surface of eating quality of ‘Buoi’ mangoes stored at different temperatures 95

Figure 5.21 Effects of storage temperature on SSC of ‘Buoi’ mangoes after removal from cold storage and ripening for 4 days 97

Figure 5.22 Effects of storage temperature on acidity of ‘Buoi’ mangoes after removal from cold storage and ripening for 4 days 97

Figure 5.23 Effects of storage temperature on CI of ‘Buoi’ mangoes after removal from cold storage and ripening for 4 days 98

Figure 5.24 Effects of storage temperature on EQ of ‘Buoi’ mangoes after removal from cold storage and ripening for 4 days 98

Figure 6.1 ‘Buoi’ mangoes affected by anthracnose and stem-end rot. ... 103

Figure 6.2 Effects of postharvest treatments and harvest date on anthracnose incidence in ‘Buoi’ mangoes. 108

Figure 6.3 Effects of postharvest treatments and harvest date on stem-end rot incidence in ‘Buoi’ mangoes. 109

Figure 6.4 Effects of postharvest treatments and harvest date on development of chilling injury in ‘Buoi’ mangoes. 109
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANOVA</td>
<td>analysis of variance</td>
</tr>
<tr>
<td>a</td>
<td>blade radius, m</td>
</tr>
<tr>
<td>b</td>
<td>blade width, m</td>
</tr>
<tr>
<td>CA</td>
<td>controlled atmosphere</td>
</tr>
<tr>
<td>CI</td>
<td>chilling injury</td>
</tr>
<tr>
<td>CO₂</td>
<td>carbon dioxide</td>
</tr>
<tr>
<td>EQ</td>
<td>eating quality</td>
</tr>
<tr>
<td>HHHA</td>
<td>high humidity hot-air</td>
</tr>
<tr>
<td>HI</td>
<td>hyperthermal injury</td>
</tr>
<tr>
<td>HWT</td>
<td>hot water treatment</td>
</tr>
<tr>
<td>ISFV</td>
<td>International Standardisation of Fruits and Vegetables</td>
</tr>
<tr>
<td>ISO</td>
<td>International Standard Organisation</td>
</tr>
<tr>
<td>k</td>
<td>coefficient of individual acid</td>
</tr>
<tr>
<td>M</td>
<td>maximum moment produced when the aim is horizontal</td>
</tr>
<tr>
<td>MA</td>
<td>modified atmosphere</td>
</tr>
<tr>
<td>MAP</td>
<td>modified atmosphere packaging</td>
</tr>
<tr>
<td>min</td>
<td>minutes</td>
</tr>
<tr>
<td>n</td>
<td>amount of NaOH 0.1 N</td>
</tr>
<tr>
<td>O₂</td>
<td>oxygen</td>
</tr>
<tr>
<td>P</td>
<td>weight of the sample</td>
</tr>
<tr>
<td>PE</td>
<td>pectinesterase</td>
</tr>
<tr>
<td>PG</td>
<td>polygalacturonase</td>
</tr>
<tr>
<td>RH</td>
<td>relative humidity</td>
</tr>
<tr>
<td>R²</td>
<td>regression coefficient</td>
</tr>
<tr>
<td>SAS</td>
<td>statistical analysis system</td>
</tr>
<tr>
<td>sec</td>
<td>seconds</td>
</tr>
<tr>
<td>SSC</td>
<td>soluble solids content</td>
</tr>
<tr>
<td>T</td>
<td>storage time</td>
</tr>
<tr>
<td>TA</td>
<td>total acidity</td>
</tr>
<tr>
<td>Temp.</td>
<td>temperature</td>
</tr>
</tbody>
</table>
VHT = vapour heat treatment
Wr = weight loss rate
Wi = initial weight
Wa = weight after removal from cold storage
σ_{cr} = flesh crushing stress