The Author of the thesis owns copyright. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Identification of Gcn1 binding proteins and characterization of their effect on Gcn2 function

A thesis submitted in partial fulfillment of the requirements for the degree Doctor of Philosophy in Biochemistry

Massey University, Albany
New Zealand

Renuka Shanmugam
ID – 09202463

2015
Abstract

All cells must have the ability to deal with a variety of environmental stresses. Failure to adapt and protect against adverse stress conditions can lead to cell death. One important stress that affects all cells is amino acid limitation. Amino acids are building blocks of proteins. Gcn2 is a protein kinase, activated under conditions of amino acid limitation and the active Gcn2 reduces the general protein synthesis and specifically increases the synthesis of a protein called Gcn4, a transcription factor of stress response genes.

Gcn2 is found in virtually all eukaryotes. In addition to the amino acid limitation it protects cells to a large array of stress conditions such as glucose and purine limitation, high salt, reactive oxygen species and UV irradiation. Interestingly, Gcn2 has been found to have acquired additional functions in higher eukaryotes such as cell cycle regulation, viral defense and memory formation. Not surprisingly, Gcn2 has been implicated in diseases and disorders such as abnormal feeding behaviour, cancer, Alzheimer’s disease, impaired immune response, congestive heart failure, and susceptibility to viruses including HIV. Despite of its medical relevance, so far it is unknown how the cell ensures proper Gcn2 function.

Yeast studies have uncovered that for almost all Gcn2 functions Gcn2 must bind to its positive effector protein Gcn1. Gcn1 is proposed to be a scaffold protein, strongly suggesting that it serves as a platform for recruiting other proteins close to Gcn2 to fine-tune its activity. For this reason, in this study, we set out to comprehensively identify all proteins binding to Gcn1, i.e. generate the Gcn1 interactome, using a procedure that allowed us to also identify proteins that only weakly or transiently contact Gcn1 (a typical property of regulatory proteins). We have identified several potential Gcn1 binding proteins from published and in house data. Sixty six of these were further analyzed using the respective deletion strains. Ten of these deletion strains were unable to grow under amino acid starvation conditions. Five of these showed reduced eIF2α phosphorylation, strongly suggesting that they are positive effectors of Gcn2. Using plasmids from the Yeast Genome Tiling Collection, we were able to rescue the Gcn2 function of three deletion strains (kem1Δ, msn5Δ and sin3Δ), indicating that the defect was due to the deletion of the respective gene. In addition, some of these proteins were confirmed to reciprocally bind to Gcn1. Finally, we show that Kem1 partially facilitates activation of Gcn2 via Gcn1 and it may play a role as a positive regulator of Gcn2. Further the interactions were validated by reciprocal immunoprecipitation. Taken together, this study sheds light on novel Gcn1 binding proteins regulating Gcn2.
Acknowledgements

I am extremely thankful and deeply indebted to my research guide Dr. Evelyn Sattlegger. You have been a phenomenal mentor for me. I would like to thank you for your invaluable advice, encouragement and continuous support which helped me a lot to come across the obstacles that I had in the last four years. Thank you very much for your continuous encouragement in every step right from the preliminary stage to the final stage of this research. I would also like to thank you for your patience in proof reading my thesis over and over again and helping me to improve my English writing skills in addition to getting my thesis done.

I would like to thank my research co-supervisor Dr. Mark Patchett.

Further, I would like to extend my thanks to my laboratory colleagues and friends Su Jung Lee, Viviane Jochmann and Rashmi Ramesh.

My special thanks go to my laboratory colleague and friend Michael Bolech. Thank you very much for being there always for me.

I am very grateful to Hayley Prescott, Paulina Hanson Manful and Kay Evans, for proof reading my thesis and making it to read well.

I am thankful to my interns Tina Fritzsche, Hayley Prescott, Katharina Dahlmann and Katja Dammann for helping me to get the screening done.
Table of Contents

Abstract .. 1

Acknowledgements .. ii

Abbreviations ... viii

Chapter 1 Introduction ... 1

1.1 Overview of the General Amino Acid Control (GAAC) ... 2
1.1.1 Gcn2 (General Control Nonderepressible 2) ... 4
1.1.2 Gcn1/Gcn20 complex ... 5
1.1.3 eIF2 (eukaryotic Initiation Factor 2) .. 8
1.1.4 Gcn4 (General Control Nonderepressible 4) .. 9
1.1.5 GAAC is conserved from yeast to mammals .. 11
1.2 Gcn1 dependent activation of Gcn2 under other nutrient stress conditions 12
1.3 Proteins regulating Gcn2 by disrupting the Gcn1-Gcn2 interaction .. 13
1.3.1 Yih1 (Yeast Impact Homologue) ... 13
1.3.2 Gir2 (Genetically Interacts with Ribosomal genes 2) ... 14
1.4 Hypothesis and aim of research .. 15
1.5 Scope of this study .. 16

Chapter 2 Materials and Methods ... 19

2.1 Biological Materials ... 20
2.2 Plasmid constructions .. 24
2.3 Media ... 24
2.4 Media Supplements ... 25
2.5 Growth Conditions ... 26
2.6 Plasmid DNA isolation and purification ... 26
2.7 DNA digestions and ligation ... 27
2.8 Agarose gel electrophoresis ... 28
2.9 Transformation of yeast using lithium acetate method ... 28
2.10 E-coli transformation .. 29
2.11 Preparation of yeast cell extracts .. 30
2.12 Estimation of Protein Concentration .. 31
2.13 Gradient Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) 32
2.14 Staining Proteins in acrylamide gels .. 33
2.15 Western Blot and immune detection of proteins ... 33
2.16 Protein-Protein interaction assays .. 35
2.17 Semi quantitative growth assay .. 37
2.18 Solubilization of the pellets after centrifugation steps ... 37

Chapter 3 Identification of potential Gcn1 binding proteins .. 39

3.1 Identification of potential Gcn1 binding proteins from published data .. 40
3.1.1 Minimal Gcn1 interactome .. 44
3.1.2 Extended Gcn1 interactome .. 46
3.1.3 Comprehensive affinity purification studies did not capture all the known interacting partners of Gcn1 ... 50
3.1.4 Discussion .. 51
3.2 Identification of Gcn1 binding proteins from in house data ... 55
3.2.1 Stabilization of protein-protein interactions via formaldehyde mediated cross-linking 55
3.2.2 The TAP and Myc-tags do not affect Gcn1 function ... 56
3.2.3 Formaldehyde cross-linking does not affect anti-Myc antibody mediated
immunoprecipitation of Gcn1-Myc ... 60
3.2.4 The effect of time and temperature on formaldehyde cross-linking of Myc-tagged Gcn1 61
3.2.5 Optimization of Gcn1-Myc co-immunoprecipitation .. 69
3.2.6 Large scale purification of Gcn1 containing complexes, and identification of the
components via Mass Spectrometry .. 78
3.2.7 Mass Spectrometry Identification of Proteins ... 84
3.2.8 Gene Ontology (GO) of Gcn1 binding proteins .. 89
3.2.8.1 Cellular localization of Gcn1 binding proteins ... 89
3.2.8.2 Biological processes mediated by Gcn1 binding proteins .. 90
3.2.9 Comparative analysis of the three Gcn1 interactomes .. 93
3.2.10 Discussion .. 94

Chapter 4 Identification of Gcn1 binding proteins that are positive regulators of Gcn2........ 109
4.1 Screening of gene knockout mutants-encoding for Gcn1 binding proteins for impaired
GAAC response .. 110
4.2 Screening of the SM sensitive strains for impaired Gcn2 function 113
4.3 Complementation assays .. 117
4.4 Discussion ... 122

Chapter 5 Reciprocal immunoprecipitation of Gcn1 binding proteins 131
5.1 Optimization of anti-GFP antibody mediated co-immunoprecipitation 132
5.2 Validation of the interactions between Gcn1 and Gcn2 binding proteins 139
5.3 Discussion ... 149

Chapter 6 Is Kem1 involved in Gcn1 mediated activation of Gcn2?................................. 153
Discussion .. 157

Conclusions .. 161

Future directions .. 165

Appendix ... 169

References ... 181

Table of Figures
Figure 1.1. Overview of the GAAC. .. 3
Figure 1.2. Representation of domains in Gcn2 .. 5
Figure 1.3. A) Schematic representation of segments in Gcn1 .. 7
Figure 1.4. Schematic representation of translation initiation and Gcn4 expression under
replete (A) and starvation (B) conditions .. 10
Figure 1.5. Representation of different eIF2α kinases in mammals and the different stress
conditions that mediate phosphorylation of eIF2α .. 11
Figure 3. 1 Schematic representation of the TAP and FLAG affinity purification
strategies ... 41
Figure 3.2. Overview of the different large-scale affinity purification studies carried out on yeast and the workflow. ... 42
Figure 3.3. Minimal Gcn1 interactome. ... 45
Figure 3.4. Proteins co-precipitated by Gcn20 in the indicated studies. 46
Figure 3.5. Extended Gcn1 interactome... 47
Figure 3.6. Identification of proteins potentially in the same complex with Gcn1........ 49
Figure 3.7. Occurrence of Gcn1-Gcn2, Gcn1-Gcn20 and Gcn1-Gcn2-Gcn20 interactions in the co-precipitates of indicated affinity purification studies.. 51
Figure 3.8. Structure of formaldehyde representing the two reactive groups and its spacer arm... 56
Figure 3.9. Semi quantitative growth assay of TAP tagged Gcn1 (A) and Myc tagged Gcn1 (B) .. 58
Figure 3.10. Expression levels of endogenous GCNI, and GCNI from a low copy and high copy plasmid. .. 59
Figure 3.11. Amino acid sequences of the TAP and Myc tags. 60
Figure 3.12. Basic principle of the anti-Myc antibody mediated immunoprecipitation. 62
Figure 3.13. The effect of temperature and incubation time on formaldehyde cross-linking and anti-Myc antibody mediated immunoprecipitation... 63
Figure 3.14. Comparison of the total protein concentration in cell extracts obtained from the cells subjected to formaldehyde cross-linking (+) or not (-), at room temperature..... 65
Figure 3.15. A) Overview of the steps involved in generating the cell extracts........ 66
Figure 3.16. Stabilization of Gcn1 containing protein complexes by formaldehyde cross-linking... 68
Figure 3.17. Anti-Myc antibody mediated immunoprecipitation of Gcn1-Myc from cell extracts obtained from cells that were subjected to formaldehyde cross-linking and not cross-linked. ... 70
Figure 3.18. Anti-Myc antibody mediated immunoprecipitation of Gcn1-Myc from cell extracts obtained from cells that were subjected to formaldehyde cross-linking 70
Figure 3.19. Comparison of low pH elution and elution by boiling in protein loading dye. .. 72
Figure 3.20. Eluting the immune complexes from the agarose beads by lowering pH reduced non especifically bound proteins... 73
Figure 3.21. Basic principle of reverse-order anti-Myc immunoprecipitation. 74
Figure 3.22. Performing the anti-Myc immunoprecipitation in reverse order removed the non-specifically bound proteins. .. 75
Figure 3.23. Stabilization of Gcn1 containing protein complexes by formaldehyde cross-linking... 76
Figure 3.24. Anti-Myc antibody mediated immunoprecipitation of hc plasmid borne Gcn1-Myc.. 78
Figure 3.25. Gcn1 specific immunoprecipitation of Gcn1 binding proteins................ 79
Figure 3.26. Western blot of samples that were resolved by SDS-PAGE for 6, 4, 2 or 1 cm .. 81
Figure 3.27. Colloidal Coomassie staining of SDS-PAGE..................................... 82
Figure 3.28. Work strategy of formaldehyde cross-linking followed by affinity purification and LC-MS-MS analysis. .. 83
Figure 3.29. Proteins identified by Mass Spectrometry in the unstabilized and formaldehyde stabilized Gcn1-Myc complexes .. 84
Figure 3.30. in house Gcn1 interactome .. 86
Figure 3.31. Comparison of proteins co-precipitated with Gcn1 in this study and proteins co-precipitated with Gcn1 in the Gavin et al. (2006) study .. 89
Figure 3.32. Localization of Gcn1 binding proteins predicted by BiNGO 91
Figure 3.33. Pathway output from the BiNGO analysis.. 92
Figure 3.34. Comparison of the minimal, extended and in-house Gcn1 interactomes 93
Figure 3.35. Surface representation of the 80S ribosome of Saccharomyces cerevisiae in a P-site Met-tRNAi^{Met} bound state ... 103
Figure 4.1. Comparison of growth rates of the wild type with gene deletion mutants 113
Figure 4.2. Comparison of eIF2α-P levels of the gene deletion mutants to that of the wild type under starvation (+) and replete conditions (-) ... 115
Figure 4.3. Comparison of eIF2α phosphorylation levels of gene knockout strains relative to wild type .. 116
Figure 4.4. The tilling collection plasmids containing full length or truncated KEM1, SIN3 and MSN5 .. 118
Figure 4.5. Gene complementation assay of kem1Δ, sin3Δ and msn5Δ strains 120
Figure 4.6. Complementation assay of kem1Δ strain with low copy plasmid derived Kem1. .. 121
Figure 4.7. Summary of the SM’ and eIF2α-P screenings .. 128
Figure 5.1. Determination of the anti-GFP antibodies required to coat the protein A Sepharose beads ... 134
Figure 5.2. Anti-GFP antibody mediated immunoprecipitation 135
Figure 5.3. Anti-GFP antibody mediated immunoprecipitation 137
Figure 5.4. Anti-GFP antibody mediated immunoprecipitation with a commercially available anti-GFP antibody coated Sepharose .. 138
Figure 5.5. Anti-GFP antibody mediated immunoprecipitation of Gcn20-GFP, Kem1- GFP and Pgk1-GFP ... 141
Figure 5.6. Anti-GFP immunoprecipitation of Gcn1-GFP, Gcn2-GFP, Gcn20-GFP, Acc1- GFP, Fas1-GFP, Fas2-GFP and Ura2-GFP ... 143
Figure 5.7. Anti-GFP immunoprecipitation of Gcn20-GFP, Sin3-GFP, Vps1-GFP, Rnr1- GFP, Kap123-GFP, Msn5-GFP and Pgk1-GFP ... 146
Figure 5.8. Anti-GFP immunoprecipitation of Gcn20-GFP, Fas1-GFP, Fas2-GFP, Kem1- GFP, Msn5-GFP and Pgk1-GFP .. 148
Figure 6.1. Semi quantitative growth assay .. 156
Figure A.0.1. Verification of pRS1 by restriction digestion .. 170
A.2. Results of the SM’S screening .. 174
Table of Tables

Table 2.1 Plasmids used in this study ... 20
Table 2.2 Yeast (*Saccharomyces cerevisiae*) strains used in this study 21
Table 2.3 Media supplements used in this study .. 25
Table 2.4 List of primary antibodies used in this study .. 34
Table 2.5 List of secondary antibodies used in this study 34
Table 3.1 The general features of the previously published proteomic studies in the yeast *Saccharomyces cerevisiae* ... 42
Table 3.2 Identification of the known Gcn1 or Gcn2 binding proteins in the unstabilized and formaldehyde stabilized Gcn1-Myc complexes. .. 87
Table 3.3 Comparison of the results obtained from the Y2H (Sattlegger group, unpublished) and ribosomal gene knockout screening (Jochmann and Sattlegger, unpublished) with the results obtained from this study .. 105
Table 4.1 Overview of the screenings of gene knockout mutants-encoding for Gcn1 binding proteins for their sensitivity to SM, and reduced eIF2α-P level 127
Table A.1 Proteins removed from the LC-MS-MS raw purification list 170
Table A.2 Categorization of overrepresented proteins under the major GO localization identified by BiNGO analysis .. 172
Table A.3 Categorization of overrepresented proteins under the major GO processes identified by BiNGO analysis ... 173
Table A.4 Summary of the SM sensitivity screening .. 178
The following abbreviations are used in addition to the chemical symbols from the periodic table of elements and the International System of Units (SI):

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3AT</td>
<td>3-Amino-1, 2, 4-triazole</td>
</tr>
<tr>
<td>ABC</td>
<td>ATP Binding Cassette</td>
</tr>
<tr>
<td>APS</td>
<td>Ammonium PerSulphate</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine tri phosphate</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine Serum Albumin</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediamine tetra acetic acid</td>
</tr>
<tr>
<td>Co-IP</td>
<td>Co-Immunoprecipitation</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxide</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylene Diamine Tetra acetic Acid</td>
</tr>
<tr>
<td>eEF3</td>
<td>Eukaryotic Elongation Factor 3</td>
</tr>
<tr>
<td>eIF2</td>
<td>Eukaryotic Initiation Factor 2</td>
</tr>
<tr>
<td>eIF2α-P</td>
<td>Eukaryotic Initiation Factor 2 phosphorylated</td>
</tr>
<tr>
<td>alpha subunit</td>
<td>Guanine nucleotide exchange factor</td>
</tr>
<tr>
<td>eIF2B</td>
<td>Ethidium Bromide</td>
</tr>
<tr>
<td>GAAC</td>
<td>General Amino Acid Control</td>
</tr>
<tr>
<td>Gcn1</td>
<td>General control non-derepressible 1</td>
</tr>
<tr>
<td>Gcn2</td>
<td>General control non-derepressible 2</td>
</tr>
<tr>
<td>Gcn3</td>
<td>General control non-derepressible 3</td>
</tr>
<tr>
<td>Gcn4</td>
<td>General control non-derepressible 4</td>
</tr>
<tr>
<td>HIV</td>
<td>Human immunodeficiency virus</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilo Dalton</td>
</tr>
<tr>
<td>LB</td>
<td>Luria- Bertani</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger ribonucleic acid</td>
</tr>
<tr>
<td>NaCl</td>
<td>Sodium Chloride</td>
</tr>
<tr>
<td>NaOH</td>
<td>Sodium hydroxide</td>
</tr>
</tbody>
</table>
OD Optical Density
ORF Open Reading Frame
p Plasmid
PAGE Polyacrylamide Gel Electrophoresis
PEG Polyethylene glycol
Pgk1 3-Phosphoglycerate kinase
PVDF Polyvinylidene Difluoride
RNase Ribonuclease
rpm Revolutions per minute
RT Room Temperature
SD Synthetic Dextrose
SDS Sodium Dodecyl Sulphate
SM Sulfometuron Methyl
SMS Sensitivity to sulfometuron methyl
ss Single strand
Slg- Slow growth
TAE Tris-Acetate EDTA
TBS Tris-Buffered Saline
TBS-T TBS-Tween
TC Tertiary Complex
TEMED N, N, N, N- Tetramethylethlenediamine
Y2H Yeast Two Hybrid
YPD Yeast extract Peptone Dextrose
YPG Yeast extract Peptone Glycerol