Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis, or part of it, may not be reproduced elsewhere without the permission of the Author.
The aspirin augmented standardized lactulose mannitol test as a measure of the ‘health’ of the gastrointestinal tract

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

at

MASSEY UNIVERSITY

Palmerston North, New Zealand

Ivana Roosevelt Sequeira

2015
DEDICATED TO

My father, Roosevelt Franklin Sequeira

For teaching me to never give up.

I miss you every day.
ABSTRACT

In this thesis, I studied the ‘classical’ lactulose mannitol test for intestinal permeability that has been used to measure the integrity of the intestinal mucosa and thus to provide an index of recovery from inflammatory bowel disease (IBD) and from autoimmune diseases such as coeliac disease. Perusal of the literature indicates that the protocol for the test has not been standardized and a variety of different test protocols have been used. Hence there are differences in the duration of urinary sampling, the doses of the two test probes, the volumes of fluid consumed during the test and the administration of the test during the fasted or fed state. There is therefore a need for a standardized test.

The bulk of the research conducted in this thesis was to develop an optimal protocol with a standardized osmolarity (720 osmol l⁻¹) for the test solution that contained 10 g of lactulose and 5 g of mannitol dissolved in 100 ml of water. Similarly the total fluid intake was standardized to 700 ml. The volumes of fluid consumed over the experimental period were also standardized in order to control for any osmolar effects of the test drink and to hydrate the subjects sufficiently to enable them to produce half-hourly urine samples of a reasonable volume.

The rates of excretion and the timings of the peaks in the excretion of mannitol and lactulose were found to vary over time in healthy subjects. Hence the rate of mannitol excretion peaked during the first two hrs whilst the rate of lactulose excretion peaked at four hrs. The correlation between urinary excretion with intestinal transit times were confirmed using a wireless motility capsule. The work with the wireless motility capsule indicated that the probe sugars were in the small intestine from 2½ - 4 hrs and in the proximal colon from 4½ - 6 hrs following dosage with the test solution. Hence a sample
collected during the 2½ - 4 hr period is best for assessing permeability of the small intestinal mucosa in healthy subjects. The wireless motility capsule also confirmed that the standardized dose of the lactulose mannitol did not influence gastric transit time or that through the small intestine and large intestine. These findings confirmed that the standardized test was determining absorption during transit of the test sugars through the small and the large intestine.

The effect of co-dosage with 600 mg of aspirin in the standardized test was then examined as a means of assessing the effect of a reproducible noxious stimulus on the absorption of the sugar probes. This agent augmented small intestinal permeability to lactulose and decreased its permeability to mannitol. Furthermore dosage with aspirin amplified the effect of a pre-existing adverse stimulus such as smoking. Hence the aspirin augmented test could conceivably be used to ‘unearth’ sub-clinical inflammation. Further work explored the effect of an antioxidant, ascorbic acid, on mucosal permeability. The results showed that, rather than mitigating the adverse effects of aspirin, ascorbic acid augmented intestinal permeability.

In summary the work in this thesis has enabled the development of a standardized test that optimizes the ability of the lactulose mannitol test to detect clinical disorders of absorption. Further, augmenting the test with a single dose of aspirin may be useful as an index of gut health or robustness.
ACKNOWLEDGEMENTS

‘The only limits are, as always, those of vision’ - James Broughton

I take this opportunity to present an unedited gratuitous expression to a few people that deserve special mention for their role in the accomplishment of my thesis.

My ‘academic parents’ here at Massey, Prof. Roger Lentle and Prof. Marlena Kruger, for caring and believing in me even when I doubted myself - your unfailing expectations, unwavering support and guidance helped fuel my determination.

Roger, my ‘gastro guru’, has always believed in my abilities. His passion and enthusiasm was often contagious. In reviewing my work and writing, he offered painstaking comments and always respected my voice. His comments and suggestions often evoked a mixture of gratitude (for the detailed attention to my arguments), exhilaration (as he always dramatically improved it!) and awe (“why didn’t I think of that?”). Thank you Roger for ‘damaging my brain’, for always reiterating ‘don’t you worry lass’ and for the constant kind words that motivated me to do better.

Marlena has been the calming influence throughout my work. Had it not been for the consideration that she gave to my application in 2009, a PhD in New Zealand would not have become a reality. As the voice of reason and a solid sounding board she often came up with issues that I would not have otherwise identified. I express my deep gratitude to her for thinking me worthy of this opportunity, for her encouragement and continuous support.

I gratefully acknowledge Dr. Roger Hurst and the New Zealand Institute for Plant and Food Research for the funding received during the course of this project. Dr. Roger
Hurst’s advice and guidance during the project has been invaluable. Routine meetings with both Rogers’ in attendance have never been dull!

Chris Booth and Michelle McGrath have been more than lab managers associated with the project, but friends whom I could count on and ‘go to’ when work got the better of me. Also Corrin, Shampa and others that gathered during morning tea, I appreciate the constant encouragement and healthy doses of caffeine you’ve shared with me. Dr. Gordon Reynolds, Prof. Patrick Morel and Dr. Fran Wolber, whose brain I picked to often review my writing, thank you for your patience with reading and offering me invaluable advice.

In recognition of the lasting friendships that I have made; Merrin, Kenneth, Zirsha, Jerry, Mel, Samuel, Alex, Julia, Matthew and Wensheng thank you for the immense support, constant encouragement and for being there when I needed to let off steam.

My parents, Roosevelt and Lorena, brother Delano and god father Carl have been my pillars of strength and greatest support. Thank you for nurturing my goals and ambitions and supporting me during my strife. Much love to you.

Thank you all for being a part of my journey. The stress, excitement, hard work, sleepless nights and sheer joy at finally feeling like I have made a ‘discovery’ is unimaginable.

A special mention to ‘Damien’, the HPLC system, he was steadfast and rock solid when there were very many samples that required analysis!

To all the participants without whom none of the studies would have been possible, I am very grateful. Approval for all research described in this thesis has been obtained from the Massey University Human Ethics Committee Southern A.
TABLE OF CONTENTS

TABLE OF CONTENTS... v
LIST OF FIGURES... xvii
LIST OF TABLES.. xx

CHAPTER 1 Overview of the thesis... 1
 1.1. Introduction .. 2
 1.2. The GI tract - a selective filter to the changing dynamic luminal environment..... 3
 1.3. How can we quantify gut 'health'? ... 5
 1.4. Intestinal Permeability - potential 'dynamic' measure of gut health 6
 1.5. Perspective of the thesis ... 7
 1.6. Structure of the thesis .. 11
 1.7. References.. 12

CHAPTER 2 Review of literature ... 15
 2.1. Factors influencing mucosal permeability... 16
 2.1.1. Elements that constitute the barrier property of the intestine 16
 2.1.2. The pre-epithelial layer – the first barrier that possibly alters diffusion
 gradients and rates of absorption .. 18
 2.1.3. The epithelial layer – the barrier that selectively absorbs nutrients via
 diffusion via the transcellular and paracellular route ... 20
 2.2. Measuring intestinal gut permeability... 28
 2.2.1. Dual sugar absorption test .. 28
 2.2.2. Carbon labelled breath tests ... 37
 2.2.3. Paracetamol absorption test ... 38
 2.2.4. Cellular methods ... 39
 2.2.5. In vitro gut models .. 43
 2.2.6. Conclusion... 44
 2.3. Aspirin, a pro-inflammatory mediator that influences mucosal integrity;
 implications for the sugar absorption test... 45
 2.3.1. Pharmacology, metabolism and absorption of aspirin in the GI tract 45
 2.3.2. Chemistry of aspirin and salicylic acid with biomolecules 48
 2.3.3. Aspirin induced increase in intestinal permeability ... 58
CHAPTER 3 Development and calibration of an analytical method to quantify excreted sugar probes

3.1. Introduction .. 78
3.2. Methodological development ... 84
 3.2.1. Reagents and Calibrators ... 84
 3.2.2. Sample preparation ... 84
 3.2.3. Optimization of column oven temperatures .. 91
3.3. Chromatographic conditions ... 94
 3.3.1. Chromatographic separation ... 94
3.4. Calibration of the method... 100
 3.4.1. Calibration curves with reference solutions of probe sugars 100
 3.4.2. Calibration with spiked urine samples .. 104
3.5. Testing the sensitivity of the method to detect sugars in urine samples collected in human studies ... 112
 3.5.1. Calculating of the dose of lactulose and mannitol necessary to prepare the test solution ... 112
 3.5.2. Determining if the calculated dose of lactulose and mannitol is sufficient for them to be readily detected in human urine ... 114
3.6. Conclusion .. 120
3.7. References ... 121

CHAPTER 4 The effect of aspirin and smoking on urinary excretion profiles of lactulose and mannitol in young females: Towards a dynamic, aspirin augmented, test of gut mucosal permeability .. 125

4.1. Abstract ... 126
4.2. Introduction .. 127
4.3. Methods .. 130
 4.3.1. General.. 130
 4.3.2. HPLC... 133
 4.3.3. Data processing and statistical analysis... 135
4.4. Results.. 136
 4.4.1. General.. 136
CHAPTER 7 Standardizing the lactulose mannitol test of gut permeability to minimize error and promote comparability ... 219
7.1. Abstract .. 220
7.2. Introduction .. 221
7.3. Materials and Methods .. 223
 7.3.1. Use of aspirin .. 223
 7.3.2. Screening and experimental protocol ... 223
 7.3.3. Determination of transit time of the sugars solutions through the stomach
 and small intestine ... 225
 7.3.4. Data analysis .. 226
7.4. Results .. 228
 7.4.1. Trends in the percentage recovery of the two probe sugars 228
 7.4.2. Determination of retention time .. 229
 7.4.3. Patterns of variation of each sugar within each period 231
7.5. Discussion .. 237
7.6. Afterword .. 242
7.7. References ... 242

CHAPTER 8 Ascorbic acid may exacerbate aspirin induced increase in intestinal
permeability ... 247
8.1. Abstract ... 248
8.2. Introduction ... 249
8.3. Methods .. 251
LIST OF PUBLICATIONS

Published manuscripts

5. Sequeira IR, Lentle RG, Kruger MC, Hurst RD. Ascorbic acid may exacerbate aspirin induced increase in intestinal permeability. Basic and Clinical Pharmacology and Toxicology 2015. doi: 10.1111/bcpt.12388

6. Sequeira IR, Lentle RG, Kruger MC, Hurst RD. Assessment of the effect of intestinal permeability probes (lactulose and mannitol) and other liquids on digesta residence times in various segments of the gut determined by wireless motility capsule: a randomised controlled trial. In final review. PloS one 2015.
LIST OF CONFERENCE PRESENTATIONS

2012

MEDIA ARTICLES

2014

1. Massey research improves gut permeability test.
 Massey News. February 19th 2014

2. Doctoral student gains international recognition.
 Manawatu Standard. February 25th 2014

3. Contains sweeteners.
 Massey defining NZ. July 14th 2014
 (http://definingnz.com/contains-sweeteners)

 Our Changing World. Radio NZ.
 (http://www.radionz.co.nz/national/programmes/ourchangingworld#audio-20161296)
ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Å</td>
<td>Angstrom</td>
</tr>
<tr>
<td>ADP</td>
<td>Adenosine diphosphate</td>
</tr>
<tr>
<td>AJC</td>
<td>Adhesive junctional complex</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>AQP</td>
<td>Aquaporin</td>
</tr>
<tr>
<td>ATL</td>
<td>Aspirin triggered lipoxin</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine tri phosphate</td>
</tr>
<tr>
<td>AUC</td>
<td>Area under curve</td>
</tr>
<tr>
<td>CLO</td>
<td>Camphylobacter like organism</td>
</tr>
<tr>
<td>COX</td>
<td>Cycloxygenase</td>
</tr>
<tr>
<td>Cr-EDTA</td>
<td>Chromium labelled ethylenediamine tetra-acetic acid</td>
</tr>
<tr>
<td>CV</td>
<td>Coefficient of variation</td>
</tr>
<tr>
<td>DC</td>
<td>Dendritic cell</td>
</tr>
<tr>
<td>DPPC</td>
<td>Dipalmitoyl-phosphotidyl choline</td>
</tr>
<tr>
<td>DHA</td>
<td>Dehydroascorbic acid</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme linked immunosorbent assay</td>
</tr>
<tr>
<td>FABP</td>
<td>Fatty acid binding protein</td>
</tr>
<tr>
<td>FOS</td>
<td>Fructo-oligosaccharide</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier transform infrared spectroscopy</td>
</tr>
<tr>
<td>GALT</td>
<td>Gut associated lymphoid tissue</td>
</tr>
<tr>
<td>GHP</td>
<td>Glutathione peroxidise</td>
</tr>
<tr>
<td>GI</td>
<td>Gastrointestinal</td>
</tr>
<tr>
<td>GLUT</td>
<td>Glucose transporter</td>
</tr>
<tr>
<td>GOS</td>
<td>Galacto-oligosaccharide</td>
</tr>
<tr>
<td>GST</td>
<td>Glutathione s-transferase</td>
</tr>
<tr>
<td>HETE</td>
<td>Hydroxyeicosatetraenoic acid</td>
</tr>
<tr>
<td>HPLC</td>
<td>High performance liquid chromatography</td>
</tr>
<tr>
<td>IBD</td>
<td>Inflammatory bowel disease</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>IBS-D</td>
<td>Irritable bowel syndrome with diarrhoea</td>
</tr>
<tr>
<td>IFN-γ</td>
<td>Interferon gamma</td>
</tr>
<tr>
<td>Ig</td>
<td>Immunoglobulin</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>iNOS</td>
<td>Inducible nitric oxide synthase</td>
</tr>
<tr>
<td>JAM</td>
<td>Junctional adhesion molecules</td>
</tr>
<tr>
<td>LAL</td>
<td>Limulus amebocyte lysate</td>
</tr>
<tr>
<td>LI</td>
<td>Large intestine</td>
</tr>
<tr>
<td>LMR</td>
<td>Lactulose mannitol ratio</td>
</tr>
<tr>
<td>LOD</td>
<td>Limit of detection</td>
</tr>
<tr>
<td>LPS</td>
<td>Lipopolysaccharide</td>
</tr>
<tr>
<td>LTB</td>
<td>Leukotriene B</td>
</tr>
<tr>
<td>MAPK</td>
<td>Mitogen activated phospho/protein kinase</td>
</tr>
<tr>
<td>MCT</td>
<td>Monocarboxylic acid transport</td>
</tr>
<tr>
<td>MD</td>
<td>Molecular dynamic</td>
</tr>
<tr>
<td>MLCK</td>
<td>Myosin light chain kinase</td>
</tr>
<tr>
<td>MS</td>
<td>Mass spectrometry</td>
</tr>
<tr>
<td>NFκB</td>
<td>Nuclear factor kappa B</td>
</tr>
<tr>
<td>NHE3</td>
<td>Sodium-hydrogen antiporter 3</td>
</tr>
<tr>
<td>NO</td>
<td>Nitric oxide</td>
</tr>
<tr>
<td>NOD</td>
<td>Nucleotide-binding oligomerization domain receptors</td>
</tr>
<tr>
<td>NSAID</td>
<td>Non-steroidal anti-inflammatory drug</td>
</tr>
<tr>
<td>O/E</td>
<td>Observed to expected</td>
</tr>
<tr>
<td>OTC</td>
<td>Over the counter</td>
</tr>
<tr>
<td>PC</td>
<td>Phosphatidylcholine</td>
</tr>
<tr>
<td>PDA</td>
<td>Photodiode array</td>
</tr>
<tr>
<td>PEG</td>
<td>Polyethylene glycol</td>
</tr>
<tr>
<td>PG</td>
<td>Prostaglandin</td>
</tr>
<tr>
<td>PGE2</td>
<td>Prostaglandin E2</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>PGHS</td>
<td>Prostaglandin endoperoxidase synthase</td>
</tr>
<tr>
<td>PKC</td>
<td>Protein kinase C</td>
</tr>
<tr>
<td>PRR</td>
<td>Pattern recognition receptor</td>
</tr>
<tr>
<td>RID</td>
<td>Refractive index detector</td>
</tr>
<tr>
<td>RMA</td>
<td>Reduced major axis</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>SE</td>
<td>Standard error</td>
</tr>
<tr>
<td>SGLT1</td>
<td>Sodium glucose transporter 1</td>
</tr>
<tr>
<td>SI</td>
<td>Small intestine</td>
</tr>
<tr>
<td>SIBO</td>
<td>Small intestinal bacterial overgrowth</td>
</tr>
<tr>
<td>SLR</td>
<td>Simple linear regression</td>
</tr>
<tr>
<td>SOD</td>
<td>Superoxide dismutase</td>
</tr>
<tr>
<td>SVCT</td>
<td>Sodium dependent secondary active transport</td>
</tr>
<tr>
<td>Tc-DPTA</td>
<td>Technetium-99-labelled diethylenediaminepeptolytic acid</td>
</tr>
<tr>
<td>TEER</td>
<td>Transepithelial electrical resistance</td>
</tr>
<tr>
<td>TJ</td>
<td>Tight junction</td>
</tr>
<tr>
<td>TLC</td>
<td>Thin layer chromatography</td>
</tr>
<tr>
<td>TLR</td>
<td>Toll-like receptors</td>
</tr>
<tr>
<td>TNF-α</td>
<td>Tumour necrosis factor α</td>
</tr>
<tr>
<td>UC</td>
<td>Ulcerative Colitis</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>UWL</td>
<td>Unstirred water layer</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>ZO</td>
<td>Zona occludins</td>
</tr>
</tbody>
</table>
Figure 2-1: Schematic representation of two hypotheses presented for the passive diffusion of molecules across the enterocytes. .. 21
Figure 2-2: Schematic depiction of the apical junctional complex. 23
Figure 2-3: pH-dependent equilibrium of ionized and non-ionized forms of aspirin 46
Figure 2-4: Decreased PG synthesis due to aspirin induced COX inhibition 50
Figure 2-5: Role of prostaglandins in the stomach and the effect of aspirin and selective cyclooxygenase 2 (COX-2) inhibitors. .. 52
Figure 3-1: Sample treatment with Amberlite resin. .. 86
Figure 3-2: Samples treated with Amberlite resin and buffered with sodium hydroxide... 88
Figure 3-3: Samples treated with Amberlite resin and buffered with glacial acetic acid..... 90
Figure 3-4: Optimization of column oven temperature. .. 92
Figure 3-5: Chromatographic separation of lactulose and mannitol in standards. 95
Figure 3-6: Chromatographic separation of lactulose and mannitol in samples. 97
Figure 3-7: Chromatographic separation of lactulose, mannitol, cellobiose and rhamnose. .. 99
Figure 3-8: Calibration curves for the lactulose and mannitol standards 101
Figure 3-9: Calibration curves for lactulose, mannitol, cellobiose and rhamnose standard. .. 102
Figure 3-10: Analysis of Duphalac solution. .. 113
Figure 3-11: Resolving peaks of lactulose and mannitol in urine samples. 116
Figure 3-12: Resolving peaks of lactulose, mannitol, cellobiose and rhamnose in urine samples. .. 119
Figure 4-1: Comparison of the effect of the duration of urine collection (first 3 hr, second 3 hr and 6 hr) on the urinary lactulose:mannitol ratio (LMR) in 20 healthy female subjects following consumption of either 600 mg aspirin or a placebo. ... 139
Figure 4-2: Variation of excretion of mannitol and lactulose (mg) in urine samples from 20 healthy female smokers and non-smokers at half-hourly intervals over a six hr period following the administration of placebo and 600 mg aspirin. .. 142
Figure 4-3: Variation of lactulose:mannitol ratio (LMR) in the successive half-hourly urine samples from 20 healthy female subjects following consumption of either 600 mg aspirin or placebo. .. 144
Figure 4-4: Comparison of the effect of the duration of urine sample collection on the cumulative excretion of mannitol following consumption of either 600 mg aspirin or placebo in 20 healthy female subjects.

Figure 4-5: Comparison of the effect of duration of urine sample collection on the cumulative excretion of lactulose following consumption of either 600 mg aspirin or placebo in 20 healthy female subjects.

Figure 5-1: Polynomial curve fitted to temporal patterns of variation in percentage recovery of saccharidic probes in half-hourly urine samples from 20 healthy female volunteers after administration of placebo and aspirin.

Figure 5-2: Analyses of recovery of ingested dose of the saccharidic probes in 20 healthy female volunteers following dosing with placebo or aspirin during the time intervals between and following peaks in percentage half-hourly excretion of smaller and larger probes.

Figure 5-3: Relationship between half-hourly urinary rhamnose excretion and half-hourly urinary mannitol excretion over a 6 hr period after placebo (100 ml water) intake.

Figure 5-4: Relationship between half-hourly urinary excretion of mannitol and rhamnose after administration of the placebo to that after aspirin (600 mg) over a 4 hr period.

Figure 5-5: Relationship between half-hourly urinary excretion of lactulose after administration of placebo to that after administration of aspirin (600 mg) over a 4 hr period.

Figure 6-1: Record of variation in pH and pressure over time obtained by a wireless motility capsule in a healthy female after consumption of the placebo solution.

Figure 6-2: Variation with treatment in overall gastric emptying times determined by the wireless motility capsule in six healthy females.

Figure 6-3: Spectral density of a Fast Fourier transform (FFT) of variation in gastric pressure determined by wireless motility capsule in a single healthy female after consumption of the placebo solution.

Figure 6-4: Variation with treatment in small bowel emptying times determined by wireless motility capsule in six healthy females.

Figure 6-5: Variation with treatment in colonic emptying times determined by the wireless motility capsule in six healthy females.

Figure 7-1: Half-hourly percentage urinary recovery of ingested dose of mannitol and lactulose in 40 healthy female volunteers following dosage with placebo or aspirin.
Figure 7-2: Simple linear regressions of pooled half-hourly percentage urinary recoveries of mannitol and lactulose against time, during period II and period III after dosage with placebo or aspirin, in forty healthy female volunteers. ..

Figure 7-3: Comparison of calculated 5 hr cumulative recoveries of mannitol and lactulose in forty healthy female volunteers following dosage with placebo or 600 mg aspirin with those reported for subjects with pro-inflammatory conditions i.e. coeliac disease and Crohn’s disease ..

Figure 7-4: Comparison of temporal patterns of half-hourly urinary mannitol (mg) excretion from 40 healthy female volunteers with calculated half-hourly glucose absorbed (mg/½ hr) based on published blood sugar values of women with non-insulin dependent diabetes and those with normal glucose tolerance ...

Figure 8-1: Variation in recovery of mannitol (% ingested dose) with treatments over 0-3 and 3-6 hr of urine collection in 28 healthy females compared with results of a previous experiment on 40 healthy female participants. ...

Figure 8-2: Variation in recovery of lactulose (% ingested dose) with treatments over 0-3 and 3-6 hr of urine collection in 28 healthy females compared with results of a previous experiment on 40 healthy female participants. ...

Figure 8-3: Variation in the percentage excretion of mannitol in nineteen healthy female subjects with the timing of dosage of ascorbic acid during the first (0-3 hr) and second (3-6 hr) three hours of urine collection...

Figure 8-4: Variation in the percentage excretion of lactulose in nineteen healthy female subjects with the timing of dosage of ascorbic acid during the first (0-3 hr) and second (3-6 hr) three hours of urine collection...

Figure 8b-1: Variation in recovery of mannitol (% ingested dose) with treatments over the 2½ - 4 hr of urine collection in 28 healthy females participants. ...

Figure 8b-2: Variation in recovery of lactulose (% ingested dose) with treatments over the 2½ - 4 hr of urine collection in 28 healthy female participants. ...

Figure 8b-3: Variation in recovery of mannitol (% ingested dose) with treatments over the 2½ - 4 h of urine collection in 28 healthy females compared with results of a previous experiment on 40 healthy female participants. ...

Figure 8b-4: Variation in recovery of lactulose (% ingested dose) with treatments over the 2½ - 4 h of urine collection in 28 healthy females compared with results of a previous experiment on 40 healthy female participants. ...
Table 2-1: Characteristics of commonly used probes to assess intestinal permeability30
Table 3-1: Summary of studies using HPLC ...81
Table 3-2: Preparation of urine spiked samples for calibration curves104
Table 3-3: Ratio of the observed/expected recovery of the two sugars using 3 spiked urine samples ...105
Table 3-4: Recovery of the two sugars from 3 different spiked urine samples106
Table 3-5: Recovery of the two sugars from 3 different spiked urine samples107
Table 3-6: Intra-assay variability of the concentration of the 2 sugars in 3 urine samples each repeated 10 times within the same run ..108
Table 3-7: Intra-assay variability of the concentration of the 4 sugars in 3 different spiked urine samples each repeated 10 times within the same run ..109
Table 3-8: Inter-assay variability of the concentration of 2 sugars in 3 urine samples each repeated 10 times in consecutive assays ..110
Table 3-9: Inter-assay variability of the concentration of 4 sugars in 3 different spiked urine samples each repeated 10 times in consecutive assays111
Table 3-10: Manual method of integration of urine samples following the baseline correction, using the LC solutions software, to accurately quantify the lactulose peak117
Table 4-1: Variation in urine volumes between smokers and non-smokers receiving either placebo and aspirin over the period of sampling ..132
Table 4-2: Differences in the quantities of lactulose, mannitol and cumulative LMR between smokers and non-smokers after receiving either placebo and aspirin in urines collected over the first three hrs, the second three hrs and the entire six hr period140
Table 5-1: Comparison of the peak defined segments of the temporal pattern of variation of excretion of the three sugars in 20 healthy female volunteers, showing variation of slopes of segments on simple linear regression ...174
Table 5-2: Comparison of the peak defined segments of the temporal pattern of variation of excretion of the three sugars in 20 healthy female volunteers, showing variation in peak mean values between treatments ...174
Table 5-3: Cumulative recoveries of lactulose, mannitol and rhamnose in urine samples expressed as the percentage recovery of the ingested dose ...176
Table 5-4: Variation in the percentage excretion of urinary lactulose, mannitol and rhamnose over collection periods of differing duration in 20 healthy female participants......

.. 178

Table 6-1: Characteristics of the various treatment solutions .. 198

Table 6-2: Variation in pH over four equal consecutive quartiles of small intestinal residence time .. 208

Table 6-3: Variation in pH in the initial and latter half of the colonic residence time with various treatments ... 210

Table 6-4: Results of Principle component analysis of gastric, small and large intestinal transit times.. 211

Table 6-1: Comparison of results of simple linear regressions from period II and III in the temporal pattern of excretion of lactulose and mannitol in 40 healthy female participants .. 232

Table 7-2: Variation in calculated hourly percentage excretions of urinary lactulose and mannitol with duration of collection period and consequent change in the lactulose:mannitol ratio (LMR) based on data from 40 healthy female participants........... 235

Table 7-1: Comparison of results of simple linear regressions from period II and III in the temporal pattern of excretion of lactulose and mannitol in 40 healthy female participants .. 232

Table 7-2: Variation in calculated hourly percentage excretions of urinary lactulose and mannitol with duration of collection period and consequent change in the lactulose:mannitol ratio (LMR) based on data from 40 healthy female participants........... 235

Table 8-1: Experimental protocol of study 1 .. 254

Table 8-2: Experimental protocol of study 2 .. 255

Table 8-3: Variation of cumulative urinary excretion of lactulose and mannitol (% ingested dose) and LMR with time and treatment in Study 1 ... 260

Table 8-4: Variation of cumulative urinary excretion of lactulose and mannitol and LMR (% ingested dose) and LMR with time and treatment in Study 2 .. 265