Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Vitamin D and Preschool Children – predictors of status and relationship with allergic and respiratory diseases in New Zealand

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy
in
Nutritional Science

at Massey University, Albany
New Zealand

Carolyn Tina Cairncross
2015
Abstract

Background

The role of vitamin D in allergic and respiratory conditions is increasingly being recognised through an immune-modulatory role. The current evidence is inconsistent, with very limited data in preschool children, a target group with high prevalence of early childhood allergic and respiratory disease. There are little data on the vitamin D status and factors associated with vitamin D deficiency in the preschool age group in New Zealand. Knowledge of these factors can assist prediction of preschool children at risk of vitamin D deficiency, improving health outcomes.

Aims and Objectives

To describe the vitamin D status of a self-selected sample of preschool children and determine predictors of vitamin D deficiency in order to develop a predictive questionnaire to assess vitamin D deficiency in this age group, and to investigate the relationship of vitamin D status and prevalence of allergic diseases - eczema, food allergy, allergic rhinoconjunctivitis and asthma – and respiratory infections.

Method

A cross-sectional sample of 1329 preschool children aged 2 to <5 years from throughout New Zealand enrolled during late-winter to early-spring in 2012. 25-hydroxyvitamin D (25[OH]D) was analysed from dried blood spots collected using capillary sampling. Caregivers completed a survey describing their child’s demographics, factors known to affect vitamin D status and medical history of allergic and respiratory diseases. Predictors of vitamin D deficiency (25[OH]D <25nmol/L) were identified using multivariable logistic regression in a randomly selected sub-sample (n=929) for development of a predictive questionnaire, which was then validated by receiver operating characteristics (ROC) analysis (n=400).

Results

Mean (SD) dried blood spot 25(OH)D concentration was 52 (19)nmol/L. Vitamin D deficiency was present in 86 (7%) and vitamin D insufficiency (25[OH]D <50nmol/L) in 642 (48%)children. Factors independently associated with the risk of vitamin D deficiency were female gender (OR=1.92, 95%CI 1.17-3.14), children of other non-European ethnicities (not including Maori or Pacific)
(3.51, 1.89-6.50), children whose mothers had less than secondary school qualifications (5.00, 2.44-10.21), who had olive-dark skin colour (4.52, 2.22-9.16), who did not take vitamin D supplements (2.56, 1.06-6.18) and who lived in more deprived households (1.27, 1.06-1.53). There were no children who drank toddler milk with 25(OH)D concentrations <25nmol/L thus these children had a zero risk of vitamin D deficiency. The predictive questionnaire had low sensitivity for the identification of children at risk of vitamin D deficiency (sensitivity 42%, specificity 97%).

Children with 25(OH)D concentrations ≥75nmol/L had a two-fold increased risk for parent reported, doctor diagnosed food allergy (OR=2.21, 95%CI 1.33-3.68). No association was present between 25(OH)D concentration and prevalence of eczema, allergic rhinoconjunctivitis, asthma or respiratory infection.

Conclusion

Dried blood spot methods facilitated the measurement of 25(OH)D concentrations in a large sample of preschool children from throughout New Zealand. Prevalence of deficiency in winter was low (7%). The predictors of deficiency were consistent with those in previous studies of other age groups in New Zealand. The predictive questionnaire identified less than half of the children with vitamin D deficiency, so has limited diagnostic ability. In this sample of preschool children, vitamin D deficiency was not associated with allergic diseases or respiratory infections. In contrast, high vitamin D concentrations were associated with a two-fold increased risk of food allergy. This relationship between vitamin D status and allergic diseases is complex, and needs to be further investigated in the preschool age group.
Acknowledgements

I would like express my gratitude to my four PhD supervisors, firstly Pamela von Hurst and Cath Conlon from Massey University, for their advice, guidance and support throughout this journey. I wish to thank Welma Stonehouse for her continuous feedback and guidance, both at Massey University in Auckland and long-distance from CSIRO, Adelaide. My thanks to Cameron Grant, from The University of Auckland, for sharing his knowledge of paediatric allergy as well as his advice and encouragement throughout this PhD. I was fortunate to have the support of a distinguished group of co-investigators; Carlos Camargo, Jane Coad, Darryl Eyles and Lisa Houghton, I appreciate their scientific critique and advice. Barry McDonald was readily available with statistical guidance, and I thank him for his patience in navigating predictive questionnaires together.

Thank you to all the study participants, the willingness of so many parents to allow their children to be part of this study was humbling.

The support of pharmacists, and their staff, for this study continually amazed me. This study would not have been possible without the donation of their time, resources and goodwill. I also acknowledge and appreciate the support of Waitemata PHO and Te Puna Haora in allowing their B4School teams to participate in the study.

Conducting fingerpricks on young children proved a steep learning curve and created quite a community feeling. I would like to acknowledge and sincerely thank the many testers: over 100 pharmacy staff members, Dr Annie Judkins and Claudine Harvey (Wellington), Jenny McKenzie (Dunedin), the nurses of the B4School Check teams at Waitemata PHO and Te Puna Haora, and Cherie Wong, Peter Cairncross and Cath Conlon (Auckland). Lisa Houghton provided invaluable assistance in recruitment and testing in Dunedin, and I am very grateful for her support throughout the data collection period.

I wish to thank Dr Daniel Exeter and Dr Jinfeng Zhao, Biostatistics and Epidemiology, School of Population Health, University of Auckland, for their generous donation of time and expertise in the geocode and deprivation index analysis.
Funding for this study was provided by the Health Research Council. I thank them for supporting this research.

When collecting data, one dreams of working in a well-oiled machine. I was extremely fortunate to have Cherie Wong, Sherina Holland and Pete as my co-workers with their unstinting work over the ten weeks contacting parents, sending letters, testing children and data-entry. Their quiet efficiency, chocolates and laughter made our recruitment and testing a success as well as a memorable experience, and they have my deepest gratitude.

I am very appreciative of the wise words shared by Marie Wong and Clare Wall, their mentoring support was invaluable throughout the last three years. I also acknowledge the generous sharing of knowledge and skills by my fellow PhD students; Cheryl, Colleen, Josh and Sherina; who kept me smiling throughout with their friendship and encouragement.

Finally, mere words cannot convey how much I appreciate the support of my wonderful family who were involved every step of the way. On this long and winding PhD road your support, and belief I could do this, never wavered. I am so grateful for your endless patience, hugs and unconditional love. To Pete, Caitlin and Emma - thank you, this is truly a family PhD.
Table of Contents

Abstract .. iii

Acknowledgements ... v

Table of Contents ... vii

List of Figures .. xii

List of Tables ... xiv

List of Appendices .. xvii

List of Abbreviations .. xviii

Contributions of the Study Team ... xx

Chapter 1: Introduction ... 1
 1.1 Introduction .. 2
 1.2 Vitamin D status of preschool children in New Zealand and factors associated with vitamin
 D deficiency .. 2
 1.3 Predictive questionnaires to assess vitamin D deficiency ... 3
 1.4 The relationship between vitamin D status and allergic diseases and respiratory infection in
 preschool children ... 4
 1.4.1 Vitamin D and eczema .. 4
 1.4.2 Vitamin D and food allergy ... 6
 1.4.3 Vitamin D and allergic rhinoconjunctivitis .. 8
 1.4.4 Vitamin D and asthma .. 10
 1.4.5 Vitamin D and respiratory infections .. 11
 1.5 Study Aims & Objectives .. 13
 1.6 Study Hypotheses .. 13
 1.7 Overview of this thesis ... 14

Chapter 2: Review of the literature .. 15
 2.1 Introduction ... 16
 2.1.1 Structure of this review ... 16
 2.1.2 Literature review introduction ... 17
 2.2 History of vitamin D ... 18
 2.3 Metabolism of vitamin D .. 19
 2.4 Vitamin D₂ and D₃ .. 21
2.5 Sources of vitamin D

2.5.1 Sun exposure source of vitamin D

2.5.1.1 Sunlight and skin cancer

2.5.2 Dietary sources of vitamin D

2.5.2.1 Food

2.5.2.2 Supplements and fortified foods

2.6 Measurement of vitamin D

2.6.1 Blood sampling – capillary versus serum

2.7 Definitions of vitamin D status

2.8 Vitamin D status of preschool children

2.9 Vitamin D status in New Zealand

2.10 Risk factors for vitamin D deficiency in preschool children

2.10.1 Seasonality

2.10.2 Latitude

2.10.3 Age

2.10.4 Gender

2.10.5 Ethnicity

2.10.6 Skin colour

2.10.7 Socioeconomic status

2.10.8 Maternal education level

2.10.9 Dietary: Supplements

2.10.10 Dietary: Milk

2.10.11 Body mass index

2.10.12 Physical activity

2.10.13 Daycare attendance

2.10.14 Sunscreen and sun protection practices

2.11 Determination of vitamin D by prediction questionnaires

2.11.1 Venepuncture and young children

2.11.2 Increase in volume of vitamin D blood test requests

2.11.3 Prediction questionnaires

2.12 The relationship between vitamin D and allergic and respiratory diseases in preschool children

2.13 Vitamin D and the immune system

2.13.1 Allergy and atopy

2.13.2 Allergic response of the immune system

2.14 Vitamin D and allergic and respiratory diseases

2.14.1 Vitamin D and eczema

2.14.2 Vitamin D and food allergy
2.14.3 Vitamin D and allergic rhinoconjunctivitis and asthma ... 66

2.14.3.1 Vitamin D and airway obstruction and pulmonary physiology 67

2.14.3.2 Vitamin D and pulmonary immune function ... 68

2.14.3.3 Vitamin D and reversal of steroid resistance ... 69

2.14.3.4 Vitamin D and respiratory infection control in patients with asthma 69

2.14.3.5 Vitamin D and respiratory infections ... 69

2.15 Points in the lifecourse when vitamin D status may be more critical 70

2.15.1 Vitamin D and allergic diseases: birth cohort studies 71

2.15.1.1 Vitamin D and eczema .. 72

2.15.1.2 Vitamin D and allergic rhinoconjunctivitis ... 72

2.15.1.3 Vitamin D and asthma .. 73

2.15.1.4 Vitamin D and respiratory infection ... 73

2.15.1.5 Vitamin D and sensitisation (IgE) .. 74

2.16 Studies examining the relationship of vitamin D status and allergic and respiratory
diseases in children of preschool age .. 78

2.16.1 Vitamin D and eczema ... 78

2.16.2 Vitamin D and food allergy .. 80

2.16.3 Vitamin D and allergic rhinoconjunctivitis ... 82

2.16.4 Vitamin D and asthma .. 82

2.16.5 Vitamin D and respiratory infection ... 84

Chapter 3: Method .. 92

3.1 Study Design .. 93

3.1.1 Participants ... 93

3.1.2 Setting and recruitment ... 93

3.1.3 Procedures ... 95

3.1.4 Blood sampling .. 97

3.1.5 Biochemical analysis ... 97

3.1.6 Anthropometric measurements .. 97

3.1.7 Questionnaire .. 98

3.2 Definitions ... 100

3.2.1 Vitamin D deficiency and insufficiency ... 100

3.2.2 Allergic diseases and respiratory infection .. 101

3.3 Statistical analysis .. 103

3.3.1 Sample size ... 103

3.3.2 Data analysis ... 103

3.3.3 Development of a predictive questionnaire for vitamin D deficiency 104
Chapter 4: Results

4.1 Vitamin D status and predictors of vitamin D deficiency in preschool children
4.1.1 Participant sample recruitment and characteristics
4.1.2 Dried blood spot 25(OH)D concentrations
4.1.3 Vitamin D categories
4.1.4 Predictors of vitamin D deficiency (25[OH]D <25nmol/L)
4.1.5 Predictors of vitamin D insufficiency (25[OH]D <50nmol/L)
4.2 Development of a predictive questionnaire to assess risk of vitamin D deficiency
4.2.1 Model for prediction of vitamin D deficiency (25[OH]D <25nmol/L)
4.2.2 Model for prediction of vitamin D insufficiency (25[OH]D <50nmol/L)
4.3 Relationship of vitamin D status with prevalence of allergic and respiratory diseases
4.3.1 Vitamin D and eczema
4.3.2 Vitamin D and food allergy
4.3.3 Vitamin D and allergic rhinoconjunctivitis
4.3.4 Vitamin D and asthma
4.3.5 Vitamin D and respiratory infections
4.3.5.1 Any respiratory infection respiratory infection (ARI)
4.3.5.2 Lower respiratory infection (LRI)
4.3.5.3 Upper respiratory infection (URI)

Chapter 5: Discussion

5.1 Statement of the main study findings
5.2 Vitamin D status and predictors of vitamin D deficiency in preschool children
5.3 Prediction of vitamin D deficiency in preschool children
5.3.1 Prediction of 25(OH)D concentrations <25nmol/L
5.3.2 Prediction of 25(OH)D concentrations <50nmol/L
5.4 The relationship between vitamin D and allergic diseases and respiratory infection
5.4.1 Vitamin D and eczema
5.4.2 Vitamin D and food allergy
5.4.3 Vitamin D and allergic rhinoconjunctivitis
5.4.4 Vitamin D and asthma
5.4.5 Vitamin D and respiratory infection
5.5 Methodological strengths and limitations
5.5.1 General strengths and limitations of the study
5.5.1.1 Study population .. 165
5.5.1.2 Questionnaire ... 167
5.5.1.3 Capillary blood sample analysis of 25(OH)D ... 168
5.5.1.4 Pharmacy as testing centre .. 170
5.5.1.5 Attrition during the study ... 171
5.5.2 Questionnaire predicting vitamin D deficiency.. 172
5.5.3 Relationship of vitamin D and allergic and respiratory diseases.............................. 173

Chapter 6: Conclusion .. 177

6.1 Implications of the study findings ... 178
6.2 Recommendations for future research .. 181
6.3 Conclusion ... 182

References .. 183

Appendices .. 215
List of Figures

Chapter 2
Figure 2.1. Published studies on vitamin D and allergy, asthma and respiratory infections from 1998 to 2010 .. 19
Figure 2.2. Vitamin D metabolism and receptor binding ... 21
Figure 2.3. The impact of vitamin D on the immune system .. 60
Figure 2.4. Overview of the pathogenesis of acute lesions of eczema .. 64
Figure 2.5. Proposed concept for adequate vitamin D status and the prevention of allergies and asthma... 71

Chapter 3
Figure 3.1. Location of the 49 pharmacies used as testing centres throughout New Zealand 94
Figure 3.2 Study flow 96

Chapter 4
Figure 4.1. Distribution of children recruited and tested in each of the 17 towns throughout New Zealand ... 112
Figure 4.2. Histogram of dried blood spot 25(OH)D concentrations of participants 112
Figure 4.3. Receiver Operating Characteristic (ROC) for identifying preschool children with vitamin D deficiency (25[OH]D <25nmol/L) -'development' dataset minus children who drink toddler milk .. 120
Figure 4.4. Internal validation: Receiver Operating Characteristic (ROC) for identifying preschool children with vitamin D deficiency (25[OH]D <25nmol/L) -'validation' subset (n=400) 122
Figure 4.5. Receiver Operating Characteristic (ROC) for identifying preschool children with vitamin D insufficiency (25[OH]D <50nmol/L) - 'development' subset (n=929) .. 125
Figure 4.6. Internal validation: Receiver Operating Characteristic (ROC) for identifying preschool children with vitamin D insufficiency (25[OH]D <50nmol/L) - 'validation' dataset (n=400)........... 127

Chapter 5
Figure 5.1. Empirical distribution function of estimated probability of vitamin D deficiency (25[OH]D <25nmol/L) in 1329 children .. 154
Figure 5.2. Empirical distribution function of predictive score for vitamin D deficiency (25[OH]D <25nmol/L) at cut-off of 1.86 .. 154
Figure 5.3. Comparison of family household deprivation index between study participants and New Zealand families.
List of Tables

Chapter 2
Table 2.1. Features of capillary versus serum 25(OH)D testing .. 28
Table 2.2. Definitions of vitamin D status by serum 25(OH)D concentration .. 29
Table 2.3. Studies of vitamin D status which include preschool aged children 2 to <5 years 32
Table 2.4. New Zealand studies investigating vitamin D status .. 37
Table 2.5. Questionnaires predicting vitamin D deficiency or insufficiency 54
Table 2.6. Birth cohort studies investigating the relationship of vitamin D and allergy 75
Table 2.7. Studies investigating vitamin D and allergic and respiratory diseases which include preschool children aged from 2 to <5 years .. 87

Chapter 3
Table 3.1. Sensitivity, specificity, positive and negative predictive values .. 105
Table 3.2. Confounders for disease outcomes as determined through logistic regression analysis .. 107

Chapter 4
Table 4.1. Vitamin D status by child demographics, sunlight exposure and main dietary sources of vitamin D .. 113
Table 4.2. Vitamin D status by maternal and household characteristics .. 114
Table 4.3. Factors independently associated with vitamin D deficiency as defined by dried blood spot 25-hydroxyvitamin D (25[OH]D) concentration <25nmol/L) for children who do not drink toddler milk .. 116
Table 4.4. Factors independently associated with vitamin D insufficiency as defined by dried blood spot 25-hydroxyvitamin D (25[OH]D) concentration <50nmol/L) .. 117
Table 4.5. Logistic regression analysis for vitamin D deficiency (25[OH]D <25nmol/L) for 'development' dataset minus children who drink toddler milk (n=870) .. 120
Table 4.6: Performance of model equation in identifying preschool children with vitamin D deficiency (<25nmol/L) - 'development' dataset minus children who drink toddler milk 121
Table 4.7. Internal validation: performance of model equation in identifying preschool children with vitamin D concentration (25[OH]D <25nmol/L) – ‘validation’ dataset (n=400) 123
Table 4.8. Sample layout of predictive questionnaire for assessment of risk of vitamin D deficiency (25[OH]D <25nmol/L) in winter in preschool children ... 124
Table 4.9. Logistic regression analysis for vitamin D insufficiency (25[OH]D <50nmol/L) for ‘development’ dataset (n=929) .. 125

Table 4.10. Performance of model equation in identifying preschool children with vitamin D insufficiency (25[OH]D) <50nmol/L) - ‘development’ dataset (n=929) 126

Table 4.11. Internal validation: performance of model equation in identifying preschool children with vitamin D insufficiency (25[OH]D <50nmol/L) – ‘validation’ subset (n=400) 128

Table 4.12. Sample layout of predictive questionnaire for assessment of risk of vitamin D insufficiency (25[OH]D <50nmol/L) in winter in preschool children ... 129

Table 4.13. Mean dried blood spot 25-hydroxyvitamin D concentration for children with and without eczema and severe eczema .. 131

Table 4.14. Prevalence of eczema by dried blood spot 25-hydroxyvitamin D concentration 131

Table 4.15. Odds ratio of eczema by dried blood spot 25-hydroxyvitamin D category 132

Table 4.16. Odds ratio of severe eczema for children with sleep disturbance by dried blood spot 25-hydroxyvitamin D category .. 132

Table 4.17. Odds ratio of severe eczema for children who use topical steroid treatment by dried blood spot 25-hydroxyvitamin D category .. 132

Table 4.18. Season of birth and prevalence of eczema ... 132

Table 4.19. Mean dried blood spot 25-hydroxyvitamin D concentration for children with and without doctor diagnosed food allergy, parental report food allergy, child having an EpiPen and food related hospital visits ... 134

Table 4.20. Prevalence of food allergy by dried blood spot 25-hydroxyvitamin D concentration ... 134

Table 4.21. Odds ratio of doctor diagnosed food allergy by dried blood spot 25-hydroxyvitamin D category ... 135

Table 4.22. Odds ratio of parental report of food allergy by dried blood spot 25-hydroxyvitamin D concentration ... 135

Table 4.23. Prevalence of parental report food allergy, doctor diagnosed food allergy, EpiPen ownership and food related visits to hospital with season of birth and region 135

Table 4.24. Mean dried blood spot 25-hydroxyvitamin D concentration for children with and without allergic rhinoconjunctivitis ... 137

Table 4.25. Prevalence of allergic rhinoconjunctivitis by dried blood spot 25-hydroxyvitamin D concentration ... 137

Table 4.26. Odds ratio of allergic rhinoconjunctivitis by dried blood spot 25-hydroxyvitamin D category ... 138
Table 4.27. Mean dried blood spot 25-hydroxyvitamin D concentration for children with and without asthma and atopic asthma ... 139
Table 4.28. Prevalence of asthma and atopic asthma by dried blood spot 25-hydroxyvitamin D concentration .. 139
Table 4.29. Odds ratio of asthma by dried blood spot 25-hydroxyvitamin D category 139
Table 4.30. Odds ratio of atopic asthma by dried blood spot 25-hydroxyvitamin D category 140
Table 4.31. Mean dried blood spot 25-hydroxyvitamin D concentration for children with atopic asthma (n=162) and their use of asthma medication ... 140
Table 4.32. Mean dried blood spot 25-hydroxyvitamin D concentration for children with any respiratory infection in the last 12 months ... 141
Table 4.33. Mean dried blood spot 25-hydroxyvitamin D concentration for children with and without lower respiratory infection in the last 12 months .. 142
Table 4.34. Prevalence of lower respiratory infection in last 12 months by dried blood spot 25-hydroxyvitamin D concentration .. 142
Table 4.35. Odds ratio of lower respiratory infection in last 12 months by dried blood spot 25-hydroxyvitamin D concentration .. 143
Table 4.36. Mean dried blood spot 25-hydroxyvitamin D concentration for children with upper respiratory infection in the last 12 months ... 144
Table 4.37. Prevalence of higher frequency of URI (common cold) in the last 12 months by dried blood spot 25-hydroxyvitamin D concentration .. 144
Table 4.38. Odds ratio of a higher frequency of URI (common cold) in the last 12 months by dried blood spot 25-hydroxyvitamin D concentration .. 144
List of Appendices

Appendix 1. Recruitment and advertising materials ... 215
Appendix 2. Study information sheet and consent form .. 221
Appendix 3. Standard operating procedures ... 226
Appendix 4. Equipment supplied to testing centres ... 230
Appendix 5. Photograph of blood spot cards .. 238
Appendix 6. Questionnaire .. 240
Appendix 7. Letter to parents – child dried blood spot 25(OH)D analysis result 255
Appendix 8. Supplementary results ... 257
Appendix 9. Conference presentations ... 276
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,25(OH)$_2$D</td>
<td>1α,25dihydroxyvitamin D or calcitriol</td>
</tr>
<tr>
<td>25(OH)D</td>
<td>25-hydroxyvitamin D</td>
</tr>
<tr>
<td>AD</td>
<td>Atopic dermatitis</td>
</tr>
<tr>
<td>ALRI</td>
<td>Acute lower respiratory infection</td>
</tr>
<tr>
<td>AMP</td>
<td>Antimicrobial protein</td>
</tr>
<tr>
<td>APC</td>
<td>Antigen presenting cell</td>
</tr>
<tr>
<td>AUC</td>
<td>Area under the curve</td>
</tr>
<tr>
<td>BMI</td>
<td>Body mass index</td>
</tr>
<tr>
<td>CD28</td>
<td>Cluster of differentiation 28</td>
</tr>
<tr>
<td>CD4+</td>
<td>CD4 lymphocyte antigen</td>
</tr>
<tr>
<td>CI</td>
<td>Confidence intervals</td>
</tr>
<tr>
<td>CYP27A1</td>
<td>Gene member of cytochrome P450 family</td>
</tr>
<tr>
<td>DBP</td>
<td>Vitamin D binding protein</td>
</tr>
<tr>
<td>DC</td>
<td>Dendritic cell</td>
</tr>
<tr>
<td>EASI</td>
<td>Eczema Area and Severity Index</td>
</tr>
<tr>
<td>FFQ</td>
<td>Food frequency questionnaire</td>
</tr>
<tr>
<td>FGF-23</td>
<td>Fibroblast growth factor</td>
</tr>
<tr>
<td>FOX P3+</td>
<td>Regulatory T cell</td>
</tr>
<tr>
<td>GINA</td>
<td>Global Initiative for Asthma</td>
</tr>
<tr>
<td>IFN-γ</td>
<td>Interferon γ</td>
</tr>
<tr>
<td>IgE</td>
<td>Immunoglobulin E</td>
</tr>
<tr>
<td>IL-12</td>
<td>Interleukin-12</td>
</tr>
<tr>
<td>IU</td>
<td>International unit</td>
</tr>
<tr>
<td>ISAAC</td>
<td>International Studies of Asthma and Allergies in Childhood</td>
</tr>
<tr>
<td>LC-MS/MS</td>
<td>Liquid chromatography with tandem mass spectrometry detection</td>
</tr>
<tr>
<td>LRI</td>
<td>Lower respiratory infection</td>
</tr>
<tr>
<td>MED</td>
<td>Minimal erythemal dose</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger RNA</td>
</tr>
<tr>
<td>NESS</td>
<td>Nottingham Eczema Severity Score</td>
</tr>
<tr>
<td>NHANES</td>
<td>National Health and Nutrition Examination Survey</td>
</tr>
<tr>
<td>NHMRC</td>
<td>National Health and Medical Research Council</td>
</tr>
<tr>
<td>NMF</td>
<td>Natural moisturising factor</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>NPV</td>
<td>Negative predictive value</td>
</tr>
<tr>
<td>NZ</td>
<td>New Zealand</td>
</tr>
<tr>
<td>OR</td>
<td>Odds ratio</td>
</tr>
<tr>
<td>P450C1</td>
<td>1-α-hydroxylase gene</td>
</tr>
<tr>
<td>PBMC</td>
<td>Peripheral blood mononuclear cells</td>
</tr>
<tr>
<td>PTH</td>
<td>Parathyroid hormone</td>
</tr>
<tr>
<td>PPV</td>
<td>Positive predictive value</td>
</tr>
<tr>
<td>RCT</td>
<td>Randomised controlled trial</td>
</tr>
<tr>
<td>RIA</td>
<td>Radioimmunoassay</td>
</tr>
<tr>
<td>ROC</td>
<td>Receiver Operating Characteristics</td>
</tr>
<tr>
<td>RSV</td>
<td>Respiratory syncytial virus</td>
</tr>
<tr>
<td>RXR</td>
<td>Retinoid X receptor</td>
</tr>
<tr>
<td>SCORAD</td>
<td>SCORing Atopic Dermatitis</td>
</tr>
<tr>
<td>SMS</td>
<td>Short message service or text</td>
</tr>
<tr>
<td>SNP</td>
<td>single nucleotide polymorphism</td>
</tr>
<tr>
<td>Th</td>
<td>T Helper cell</td>
</tr>
<tr>
<td>TLR</td>
<td>Toll like receptor</td>
</tr>
<tr>
<td>TNR-α</td>
<td>Tumor necrosis factor α</td>
</tr>
<tr>
<td>Treg</td>
<td>T regulatory cell</td>
</tr>
<tr>
<td>URI</td>
<td>Upper respiratory infection</td>
</tr>
<tr>
<td>US</td>
<td>United States</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>UVB</td>
<td>Ultraviolet beta radiation</td>
</tr>
<tr>
<td>UVR</td>
<td>Ultraviolet radiation</td>
</tr>
<tr>
<td>VDR</td>
<td>Vitamin D receptor</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>ZO1</td>
<td>Tight junction protein</td>
</tr>
</tbody>
</table>
Contributions of the Study Team

<table>
<thead>
<tr>
<th>Study Team Member</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carolyn Cairncross</td>
<td>Planned and managed the execution of the research, designed study questionnaire, obtained ethics approval, study manager, recruited and co-ordinated pharmacies, trained pharmacy staff, recruited participants, conducted research, analysed data, performed statistical analysis, interpreted the results, author of thesis</td>
</tr>
<tr>
<td>Dr Pamela von Hurst</td>
<td>Main supervisor of PhD, conceptualised and principal investigator of the research, compiled the study team, obtained HRC funding for the research, supervised development of questionnaire, initial contact and negotiations with Pharmacy Brands, contributed to training of pharmacy staff, revised and approved final thesis.</td>
</tr>
<tr>
<td>Associate Professor Welma Stonehouse</td>
<td>Co-supervisor of PhD; contributed to design of research and obtaining of funding, assisted with development of questionnaire, supervised statistical analysis of data, revised and approved final thesis.</td>
</tr>
<tr>
<td>Associate Professor Cameron Grant</td>
<td>Co-supervisor of PhD; assisted with development of questionnaire, advisor for paediatric, allergic and respiratory diseases, revised and approved final thesis.</td>
</tr>
<tr>
<td>Dr Cath Conlon</td>
<td>Co-supervisor of PhD, assisted with development of questionnaire, trained pharmacy staff, conducted fingerprick tests, revised and approved final thesis.</td>
</tr>
<tr>
<td>Dr Barry McDonald</td>
<td>Advised and assisted statistical analysis.</td>
</tr>
<tr>
<td>Study Team Member</td>
<td>Contribution</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
| **Associate Professor Darryl Eyles**
Queensland Brain Institute, University of Queensland; Queensland Centre for Mental Health Research, Australia | Contributed to the design of the research, advised and assisted with the development of standard fingerprick procedures, developed and performed the biochemical tests for analysing 25(OH)D in dried blood spots. |
| **Dr Lisa Houghton**
Nutrition Department, University of Otago, Dunedin, New Zealand | Expertise in vitamin D in paediatric age groups, assisted with the development of questionnaire, recruited pharmacies in the Dunedin area of the South Island, recruited participants, trained pharmacy staff, conducted fingerprick tests. |
| **Associate Professor Jane Coad**
School of Food and Nutrition, Massey University, Palmerston North, New Zealand | Contributed to design of the research, recruited pharmacies in the Palmerston North area, trained pharmacy staff. |
| **Professor Carlos Camargo Jr**
Department of Emergency Medicine, Massachusetts General Hospital, Boston, USA | Expertise in vitamin D and allergic and respiratory diseases and consultant on research; assisted with design of the research, assisted with development of questionnaire. |