Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Third generation extruded snacks with ancient grains

A THESIS PRESENTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Food Technology

At Massey University, Auckland, New Zealand.

Ruoling Xiao
2015
ABSTRACT

Third generation (3G) is a term that refers to the levels of processing used to produce a finished product. A 3G snack product starts with a starch based recipe that is extrusion cooked, formed into a dense shaped pellet and then dried. At this point, it is referred to as semi or half product because it needs to be further puffed to develop its texture and flavour. The objective of this project was to develop an unflavoured cereal-based 3G snack formulation with ancient grains. The snack must be unique in shape and suitable for hot air-puffing.

Two 3G wholegrain base formulations were developed. One formulation was made from coarse rice flour, wholemeal wheat flour, potato starch, ancient grain blend (one third amaranth, one third quinoa and one third millet), wheat fibre 600 and salt. The second formulation was maize based by replacing coarse rice flour with maize polenta. These two base formulations contained ancient grains and nutrients that provide health benefits and were suitable for air-puffing. A lab-scale model Clextral BC21 twin screw co-rotating extruder was used for this study. Pasting properties of samples were evaluated using the Rapid Visco Analyser. It was found that ingredient selection and extrusion processing affected extruded pellets’ paste viscosities, the die swell and product expansion.

Pasting properties of raw ingredient blend were affected by amylose and lipid content, and particle size of the cereal flour. The more even the raw material particle size was, the more even was the hydration of the material in the extruder. The results showed that inclusion of dietary fibre (wheat fibre 600, Beneo GR or Hi-Maize™ 1043) in the 3G formulations decreased raw ingredients’ and extruded pellets’ paste viscosities, which resulted in reduced pellet expansion. It was found that wheat fibre 600 at 4 % was the best fibre choice to produce a 3G snack, because it accelerated extruded pellet drying, helped in ‘pellet checking’ control and producing more uniform cell sized expanded products. Hi-Maize™ ingredients were found to lead to the deterioration of viscosity and snack pellet expansion, and therefore not recommended to be used for 3G snack base formulation.

Increasing the water injection rate to the extruder (from 1.0 to 1.7 L/h) decreased the extruder apparent torque, thrust pressure, die pressure and SME. The degree of starch degradation was also reduced, but the product expansion was increased. Pellet expansion was found closely correlated to the pasting properties of the raw ingredient blend. Pellet expansion increased with the increase of peak viscosity (PV) and final viscosity (FV) of the raw ingredient blend.

A suitable laboratory drying method was developed for 3G snacks. It was found that drying and holding at 1 h ± 5 min intervals including a pre-drying step had minimal pellets defects. Humidity control (60 %) was required throughout this drying process. After puffing, the product sectional expansion index (SEI) increased with the increase in salt concentration from 0.5 % to 1.0 % and increase in moisture content from 9.5 % to 12.1 %. The extruded pellets moisture was found to have the most significant effect on
the finished product expansion, and maximum expansion due to puffing was found at 10.6 % pellet moisture.

A shear-compression analysis of the 3G product prototypes and competitor products showed that most of low moisture commercial snack products available in the market have low bulk density and were brittle. The products produced from the proposed 3G formulations were much harder than the commercial products.

Qualitative consumer focus group studies were conducted to gain insights into consumers’ attitudes towards extruded snacks, desirable texture and product claims to be included in the product. The results showed that five themes typically associated with snack consumption (nostalgia, special social occasions, distraction, convenient treat and hunger). Taste and price were the most important to the participants, and the health benefits were only an extra bonus. Participants were not tempted by an ancient grain claim. Product prototypes did not receive very positive feedback due to the taste and the product size. Product texture was found acceptable by most participants.

This study produced initial formulations for a 3G snack, provided a good starting point for understanding of the 3G extruded snack process and provided valuable information for further development work. Further work is required to scale up the recipe, to increase the snack size, to further improve of the 3G snack flavour without significantly increasing the salt content and to carry out a consumer acceptance study on the scaled up 3G snack products.
ACKNOWLEDGEMENTS

Firstly, I thank the Sanitarium Health and Wellbeing Company for sponsoring this project. 3G snacks have good market and potential for development. It is my privilege to have been exposed to the development of such products. This project has been a great learning experience, I hope that the outcome from this project will provide some useful information for a further product development.

There have been many people who have contributed significantly to the completion and achievement in this project; I would like to take this opportunity to thank them.

First and foremost, I would like to thank my supervisors, Allan Hardacre and Associate Professor Marie Wong, for all the time, support and encouragement they have provided. Their academic guidance has been of great assistance.

I would like to thank my parents and everyone at Sanitarium research and development team for their support, assistance and inspiration.

Finally, I would like to thank Garry Radford, Warwick Johnson and Steve Glasgow from Massey University Palmerston North Campus for their advice and support during my experiments.
TABLE OF CONTENTS

1. **INTRODUCTION** .. 1

 1.1. OBJECTIVES .. 3

 1.2. CONSTRAINTS .. 3

2. **LITERATURE REVIEW** .. 4

 2.1. INGREDIENT SELECTION AND THEIR FUNCTIONALITIES .. 4

 2.1.1. Starch .. 5

 2.1.2. Fibre ... 12

 2.1.3. Protein .. 15

 2.1.4. Sugar and salt ... 17

 2.1.5. Lipids ... 19

 2.2. EXTRUSION PROCESSING FOR 3G SNACKS ... 19

 2.2.1. Extruder terminology ... 20

 2.2.2. Extruder components, types of extruders and their applications ... 21

 2.2.3. Pellet manufacturing process .. 23

 2.2.4. The importance of extrusion configuration ... 24

 2.2.5. Key extrusion process variables ... 25

 2.3. ROLE OF RHEOLOGY IN EXTRUSION ... 26

 2.3.1. State diagram of extrusion process .. 26

 2.3.2. Rheology properties of extrudates .. 27

 2.3.3. Die design and its impact on melt rheology ... 28

 2.3.4. Effect of raw materials and extrusion parameters on melt rheology 31

 2.3.5. Rheological measurement ... 32

 2.4. DRYING AND EXPANSION .. 33

 2.4.1. Drying of 3G snack pellets ... 33

 2.4.2. Factors affect pellet drying ... 35

 2.4.3. Expansion of dried pellets ... 36

 2.4.4. Factors affect pellet expansion ... 37

 2.5. CONCLUSIONS AND RECOMMENDATIONS .. 39

3. **MATERIAL AND METHODS** ... 41

 3.1. INGREDIENT SELECTION ... 41

 3.2. EXTRUDER CONFIGURATION ... 42

 3.3. EXTRUDER DIE DESIGN .. 44

 3.4. EXTRUDER CUTTER DESIGN .. 46

 3.5. EXPERIMENT DESIGN ... 46

 3.5.1. Effect of inclusion of different types of fibres into 3G extruded snacks 46

 3.5.2. Effect of water on 3G extruded snacks ... 48

 3.5.3. Effect of salt and flavour enhancer on 3G extruded snacks ... 48

 3.5.4. Texture analysis of reformulated 3G extruded snacks ... 49

 3.6. PHYSICO-CHEMICAL PROPERTIES OF PELLETS AND PUFFED SNACKS 50
Table of Contents

3.6.1. Moisture .. 50
3.6.2. Water activity .. 51
3.6.3. Die swell analysis ... 51
3.6.4. Section expansion indices .. 51
3.6.5. Bulk density ... 52
3.6.6. Product particle density .. 52
3.6.7. Microstructure analysis on expanded products .. 53

3.7. TEXTURE MEASUREMENT OF EXTRUDED PRODUCTS ... 53

3.8. DETERMINATION OF PASTING PROPERTIES .. 54
3.8.1. Pasting properties of raw ingredients ... 54
3.8.2. Pasting properties of extruded pellets ... 55
3.8.3. Analysis of pasting properties ... 55

3.9. PRODUCT NUTRITIONAL ANALYSIS .. 56
3.9.1. Protein determination using the Kjeldahl method .. 56
3.9.2. Total fat determination using the Mojonier method .. 56
3.9.3. Total fibre determination .. 57

3.10. STATISTICAL ANALYSIS ... 57

4. INGREDIENT SELECTION FOR 3G EXTRUDED SNACKS .. 58

4.1. INTRODUCTION .. 58

4.2. MATERIALS AND METHODS .. 58
4.2.1. Materials ... 58
4.2.2. Physico-chemical analysis ... 59
4.2.3. Pasting properties by RVA ... 59
4.2.4. Preliminary assessments of extruded cereal-potato starch mixtures 59

4.3. RESULTS AND DISCUSSION .. 61
4.3.1. Physico-chemical properties of individual ingredients 61
4.3.2. Pasting properties of individual ingredients .. 64
4.3.3. Preliminary assessments of extruded cereal-potato starch mixtures 69

4.4. CONCLUSIONS AND RECOMMENDATIONS ... 74

5. EFFECT OF FIBRE ON 3G EXTRUDED SNACKS .. 76

5.1. INTRODUCTION .. 76

5.2. MATERIALS AND METHODS .. 77

5.3. RESULTS AND DISCUSSION .. 79
5.3.1. Chemical Characteristics of fibre enriched 3G formulation 79
5.3.2. Extrusion process and pellet moisture change after extrusion and drying 79
5.3.3. Pasting properties of fibre enriched raw ingredients and extruded 3G snack pellets 83
5.3.4. Visual pellet checking assessment .. 85
5.3.5. Puffed product microstructure analysis ... 86

5.4. CONCLUSIONS AND RECOMMENDATIONS ... 91

6. BASE FORMULATION AND PROCESS IMPROVEMENTS ON 3G SNACK 92

6.1. INTRODUCTION .. 92
6. MATERIALS AND METHODS

- **6.2.** TASTE AND TEXTURE IMPROVEMENT ON 3G SNACK BASE FORMULATION
 - **6.2.1.** Effect of water on extrusion process and 3G snack base formulations
 - **6.2.2.** Drying process improvement

- **6.3.** RESULTS AND DISCUSSION
 - **6.3.1.** Effect of water on extrusion process
 - **6.3.2.** Comparison of pasting properties of raw ingredients and extruded pellets for the three base snack formulations
 - **6.3.3.** Puffed product microstructure analysis
 - **6.3.4.** Die Swell and Product Expansion Analysis
 - **6.3.5.** Pellet drying improvement

- **6.4.** CONCLUSIONS AND RECOMMENDATIONS

7. FOCUS GROUP STUDY ON EXTRUDED SNACKS

- **7.1.** INTRODUCTION

- **7.2.** EXTRUDED SNACK FOCUS GROUP PROCEDURE
 - **7.2.1.** Recruitment Procedure
 - **7.2.2.** Administrative and participants details
 - **7.2.3.** Focus Groups
 - **7.2.3.1.** 3G snack product prototype coating
 - **7.2.3.2.** Focus Group Procedure
 - **7.2.4.** Modification of discussion guide and data analysis

- **7.3.** RESULTS AND DISCUSSION
 - **7.3.1.** Social association with snack food
 - **7.3.2.** Advantages of extruded snacks over biscuits or crackers
 - **7.3.3.** Key purchase criteria for extruded snacks
 - **7.3.4.** Participants’ perception towards ingredient list, nutritional information (NIP) and product claims for extruded snacks
 - **7.3.5.** Participants’ perception of key competitors and their products
 - **7.3.5.1.** Attributes importance and Preferred extruded snacks
 - **7.3.5.2.** Features of preferred extruded snacks
 - **7.3.6.** Product Concepts

- **7.4.** CONCLUSIONS AND RECOMMENDATIONS

8. TASTE AND TEXTURE IMPROVEMENT ON 3G SNACK BASE FORMULATION

- **8.1.** INTRODUCTION

- **8.2.** MATERIALS AND METHODS

- **8.3.** RESULTS AND DISCUSSION
 - **8.3.1.** Effect of salt and Flavex on extrusion process
 - **8.3.2.** Effect of salt and Flavex on pasting properties of reformulated ‘CW’ 3G snack formulation
 - **8.3.3.** Effect of salt, Flavex and moisture on reformulated ‘CW’ snack pellet die swell and expansion
 - **8.3.4.** Evaluation on the improvements of extruded reformulated ‘CW’ snack product
 - **8.3.5.** Physico-chemical properties of reformulated 3G snack base formulations
 - **8.3.5.1.** Pellet moisture loss and changes in water activity (Aw) during drying
 - **8.3.5.2.** Pasting properties of raw ingredient blend and extruded pellets
 - **8.3.5.3.** Die Swell and Product Sectional Expansion Analysis
8.3.5.4. Shear-compression analysis of reformulated 3G product prototypes and competitor products

8.3.5.5. Macronutrients analysis of 3G base formulations

8.4. CONCLUSIONS AND RECOMMENDATIONS

9. GENERAL DISCUSSION

9.1. Effects of ingredients on 3G snack

9.2. Effect of die design, extruder configuration and process on 3G snack

10. OVERALL CONCLUSIONS AND RECOMMENDATIONS

10.1. Conclusions

10.2. Recommendations

REFERENCES

APPENDICES

Appendix 1: Raw material specifications
A 1.1 Raw material specifications for 3G snack base structure
A 1.2 Raw material specifications for 3G snack wholegrain claim
A 1.3 Raw material specifications for 3G snack ancient grain claim
A 1.4 Raw material specifications for 3G snack fibre claim
A 1.5 Flavour enhancer specifications for 3G snack
A 1.6 Seasoning specifications for 3G snack
A 1.7 Sunflower oil used for 3G snack seasoning

Appendix 2: Die conductance (k) calculation details

Appendix 3: Minitab one-way ANOVA of pasting properties for main raw ingredients in Chapter 4
A 3.1 Minitab one-way ANOVA: Pasting properties versus unground raw ingredients
A 3.2 Minitab One-way ANOVA: Pasting properties versus ground cereal ingredients

Appendix 4: Nutrient calculation and statistical analysis for fibre enriched 3G formulations in Chapter 5
A 4.1 Theoretical starch and fibre content calculation details for Table 5.1
A 4.2 Minitab One-way ANOVA of raw ingredient blend pasting properties with different fibre enriched formulations
A 4.3 Minitab One-way ANOVA of extruded pellet pasting properties with different fibre enriched formulations
A 4.4 Minitab One-way ANOVA of average cell length with different fibre enriched rice and wheat based 3G formulations
A 4.5 Minitab One-way ANOVA of number of cells per mm² with different fibre enriched rice and wheat based 3G formulations
A 4.6 Minitab One-way ANOVA of cells size distribution with different fibre enriched rice and wheat based 3G formulations

Appendix 5: Statistical analysis and calculation details for 3G snack formulation and process improvements in Chapter 6
A 5.1 Minitab One-way ANOVA of raw ingredient blend pasting properties with 3G formulation RW, CW and RWC
A 5.2 Minitab One-way ANOVA of extruded pellet pasting properties with 3G formulation RW, CW and RWC at two different water injection rate
A 5.3 Minitab One-way ANOVA of average cell length with 3G formulation RW, CW and RWC at two different water injection rate... 387
A 5.4 Minitab One-way ANOVA of average cell length with 3G formulation RW, CW and RWC at two different water injection rate... 389
A 5.5 Minitab One-way ANOVA of cells size distribution with 3G formulation RW, CW and RWC at two different water injection rate... 392
A 5.6 Minitab One-way ANOVA of die swell and SEI with 3G formulation RW, CW and RWC at two different water injection rate... 398
A 5.7 Minitab Pearson correlation analysis of die swell and pellet expansion .. 411
A 5.8 Calculation details for the effect of temperature on diffusion coefficient in the Section 6.3.5..... 412

Appendix 6: Focus group forms and analysis details for Chapter 7 ... 413
A 6.1 Low Risk Notification record for focus group study .. 413
A 6.2 Focus Group Participant Recruitment Flyer .. 414
A 6.3 Snack Focus Group Screening Questionnaire ... 415
A 6.4 Focus Group Discussion Guide (Approximately 1 hrs)... 416
A 6.5 Main Criteria for Extruded/puffed snacks... 418
A 6.6 Product Claims that are attractive/unattractive to you ... 419
A 6.7 Competitor Product Analysis Form .. 421
A 6.8 Product Nutrition Information Panels... 422
A 6.9 Product Prototype Assessment Form ... 425
A 6.10 Focus Group Transcript .. 426
A 6.11 Data Analysis for the Product Claims ... 458
A 6.12 Mintel GNPD Search by Claims or Ingredients (Retrieved 30 January 2013) 468

Appendix 7: Statistical analysis details for 3G snack taste and texture improvements in Chapter 8 471
A 7.1 Minitab One-way ANOVA of raw ingredient blend pasting properties with reformulated ‘CW’ with salt and Flavex... 471
A 7.2 Minitab One-way ANOVA of extruded pellet pasting properties with reformulated ‘CW’ with salt and Flavex .. 480
A 7.3 Minitab One-way ANOVA of die swell with reformulated ‘CW’ with salt and Flavex 487
A 7.4 Minitab General Linear Model analysis of SEI and particle density with dried pellet moisture, Flavex and salt contents... 492
A 7.5 Comparison of pellet die swell and product SEI on original and reformulated 3G formulation CW .. 493
A 7.6 Minitab One-way ANOVA of max compressive load force and product bulk density with reformulated 3G product prototypes and commercial products ... 495
LIST OF FIGURES

Figure 2.1: Structure of amylose (a), amylopectin (b) and amylopectin structure showing the clusters of chains (c), which form crystallites in the starch granule (Huang & Rooney, 2001; Thomas & Atwell, 1999) ... 6
Figure 2.2: Typical rapid visco-analyser (RVA) pasting curve representation of starch gelatinisation in the presence of sufficient or excess water (Anonymous, 1997) ...8
Figure 2.3: Physical forms of starch and methods of assessment (Guy, 2001) ...9
Figure 2.4: Analysis of fibre components (McCleary, 2008) ...14
Figure 2.5: Effect of sucrose content on SME(Δ □), die pressure (▲ ●), corn extrudate bulk density and mean cell area (■ 15 %, ▲ 20 % extrusion moisture) (Barrett et al., 1995) ... 18
Figure 2.6: Effect chemical additives on the expansion ratio of native corn starches with different amylose contents (Chinnaswamy, 1993) ...18
Figure 2.7: Section of an extruder screw (Forte & Young, 2003) ... 20
Figure 2.8: Schematic diagram of extruder basic components (Guy, 2001) ...21
Figure 2.9: The classifications, characteristics and applications of twin-screw extruders (Riaz, 2000) 22
Figure 2.10: Example of 3G process flow chart (Hertzel & Plattner, 2005) ...23
Figure 2.11: Glass and melt transition curves for extruded products (Strahm, 1998)27
Figure 2.12: Basic die terminology (Forte & Young, 2003) ...29
Figure 2.13: Factors affect half pellet drying...35
Figure 2.14: Glass and melt transition curves for an indirect-expanded product with microwave (Boischot et al., 2003) ..37
Figure 2.15: Mass density and number density of cells of expanded starchy snacks as function of the degree of gelatinisation (DG) (Van der Sman & Broeze, 2013) .. 38
Figure 2.16: Factors that influence extrudate expansion (Moraru & Kokini, 2003) 39
Figure 3.1: Picture of a Clextral twin-Screw extruder BC21 ...42
Figure 3.2: Picture of Clextral BC21 twin screw extruder screw configuration ..43
Figure 3.3: Rectangular opening die for 3G snack preliminary trial work ...44
Figure 3.4: Pasting curve of pellets made with maize polenta and potato starch44
Figure 3.5: Wave shaped 3G snack die design and opening dimensions ..45
Figure 3.6: Picture of cooling conveyor and cutter for 3G snack process ..46
Figure 3.7: Picture of Kramer cell setup for Instron texture analyser ..54
Figure 4.1: Wet extrudate of coarse rice flour (70 %) and potato starch (30 %)60
Figure 4.2: Wholemeal wheat flour retained on 710 μm and 500 μm sieves ..62
Figure 4.3: Representative pasting curves of ingredients by rapid visco-analyser65
Figure 4.4: Representative pasting curves of ground cereal materials by rapid visco-analyser 67
Figure 4.5: Representative pasting profiles of original, ground and reheated Hi-Maize™ wholegrain flour ...69
Figure 4.6: Extruder feeder settings and potential bridging points ...71
Figure 5.1: Lab-made air-puffed 3G snack process flow chart ..78
Figure 5.2: Moisture contents of snack pellets during drying (exclude conditioning periods)82
Figure 5.3: Water activity (Aw) of snack pellets during drying (exclude conditioning periods)82
Figure 5.4: Example of checked snack pellets before puffing – formulation ‘Hi-Maize Hi’82
Figure 5.5: The effect of different types and levels of fibre addition on number of cells per mm² of cross-sectional area for rice and wheat based 3G snack (mean values ± standard deviation for n=3)89
Figure 5.6: The effect of different types and levels of fibre addition on cell size distribution for rice and wheat based 3G snacks (mean values ± standard deviation for n=3) ..90
Figure 6.1: Temperature-time profiles of four pellet drying methods ..94
Figure 6.2: The effect of water addition on the number of cells per mm² for 3G snack pellets (mean values ± standard deviation for n=3) ...99
Figure 6.3: The effect of water addition and formulation on the cell size distribution (mean values ± standard deviation for n=3) ...100
Figure 7.1: Key purchase criteria for extruded snacks ...114
Figure 7.2: Number of snack variants published on mintel GNPD for Austarlia and New Zealand between 2008 and 2012 segregated by claims (Mintel, 2013) ...120
Figure 7.3: Number of snack variants published on Mintel GNPD gobally between 2008 and 2012 segregated by claims (Mintel, 2013) ...121
Figure 8.1: Reformulated ‘CW’ product SEI at different levels of salt, Flavex and moisture content (mean values ± standard deviation for n=10) ...133
Figure 8.2: The effect of pellet moisture, salt and Flavex on the reformulated ‘CW’ product SEI (graph a: pellet moisture contents (x-axis), product SEI (y-axis); graph b: formulation ‘CW’ Flavex contents (x-axis), product SEI (y-axis); graph c: formulation ‘CW’ salt contents (x-axis), product SEI (y-axis)) ..134
Figure 8.3: Reformulated ‘CW’ product’ particle density at different levels of salt, Flavex and moisture (mean values ± standard deviation for n=3) ...135
Figure 8.4: The effect pellet moisture, salt and Flavex on expanded reformulated ‘CW’ product particle density (graph a: pellet moisture contents (x-axis), particle density (y-axis); graph b: formulation ‘CW’ Flavex contents (x-axis), particle density (y-axis); graph c: formulation ‘CW’ salt contents (x-axis), particle density (y-axis)) ...135
Figure 9.1: Deformed pellets ...153
Figure 9.2: Velocity distribution affected by heat transfer and pressure variation inside of the die (Forte & Young, 2003) ...153
Figure 9.3: A schematic diagram of pressure variation at extruder opening (Forte & Young, 2003) .154
LIST OF TABLES

Table 1.1: Extruded snacks market value by country for 2010-2014 in millions of US dollars (Datamonitor, 2010) .. 1
Table 1.2: Characteristics of different snack generations (Choi, Phillips, & Resurreccion, 2007; Hertzel & Plattner, 2005; Huber, 2001; Riaz, 2006; Sunderland, 1996) ... 2
Table 2.1: Functional comparison of amylose and amylopectin in extrusion application (Le, 2010) .. 9
Table 2.2: Starch granule size and gelatinisation temperature for a range of starches from common cereal grain, ancient grains and t.. .. 11
Table 2.3: Amylose content of some ancient grains ... 11
Table 2.4: Comparison the contents of essential amino acid profile of major cereals and ancient grains with FAO requirements for human (Ahamed, Singhal, Kulkarni, & Pal, 1998; Amadou, Gouna, & Guo-Wei, 2013; FAO/WHO/UNU, 2002; Kulp & Ponte, 2000; Mosse, Huet, & Baudet, 1988; Písaříková, Kráčmar, & Herzig, 2005; Shewry, 2007) ... 16
Table 2.5: Classification of extrusion processing variables (Chessari & Sellahewa, 2001; Moraru & Kokini, 2003; Riaz, 2000) .. 25
Table 2.6: Types of die design and their impact on extruded product (Forte & Young, 2003)................. 31
Table 3.1: Main raw material sources, price and their functionality .. 41
Table 3.2: Clextral BC21 twin screw extruder screw configuration .. 43
Table 3.3: The comparison of die design between rectangular opening die and wave shaped die 46
Table 3.4: Formulations to determine the effect of soluble fibre, insoluble fibre and resistant starch on 3G snacks .. 47
Table 3.5: Formulations to determine the effect of water addition rate on 3G snacks 48
Table 3.6: Formulations used to determine the effect of salt and Flavex (vegetable protein extract) on reformulated ‘CW’ snacks .. 49
Table 3.7: The shear-compression analysis on three 3G snack base formulations 49
Table 4.1: Typical particle size of ingredients ... 61
Table 4.2: Typical proximate composition of ingredients ... 63
Table 4.3: Pasting properties of ingredients (mean values ± standard deviation for n=2) 64
Table 4.4: Pasting properties of ground cereal ingredients (mean values ± standard deviation for n=2) .. 66
Table 4.5: Preliminary 3G snack formulation ... 70
Table 4.6: Extruder processing parameters for cereal-potato starch mixtures 72
Table 4.7: Comparison of rice pellets made with 0 %, 30 % and 50 % potato starch 73
Table 4.8: Third generation (3G) snack base formulation with wholegrain wheat and ancient grains . 74
Table 4.9: Extruder processing parameters for improved 3G snack base formulation 74
Table 5.1: Wholegrain, theoretical starch and fibre contents of 3G formulations 79
Table 5.2: Resulting dependent extruder processing parameters ... 80
Table 5.3: Summary of pellet moisture content and loss from all treatments and after drying (mean values ± standard deviation for n=2) .. 81
Table 5.4: Pasting properties of fibre enriched formulations of raw ingredient blends (mean values ± standard deviation for n=2) ...83
Table 5.5: Pasting properties of extruded fibre enriched pellets after extrusion and drying (mean values ± standard deviation for n=2) ..84
Table 5.6: Pellet visual assessment for checking and puffed sample moistures (mean values ± standard deviation for 10 gram samples) ..86
Table 5.7: The effect of different types and levels of fibre addition on average cell size for rice and wheat based 3G snack (mean values ± standard deviation for n=3) ..87
Table 5.8: Cross-section Images of extruded pellets containing different fibres after expansion (8 × magnification) ..88
Table 6.1: The effect of water on 3G snack extrusion process..95
Table 6.2: Pasting properties of raw ingredients from three base snack formulation (mean values ± standard deviation for n=2) ...96
Table 6.3: The effect of water addition rate and formulation on pellet pasting properties (mean values ± standard deviation for n=2) ..96
Table 6.4: The effect of water addition and formulation on average cell length (mean values ± standard deviation for n=3) ..98
Table 6.5: Width and thickness expansion analysis of 3G formulation extruded with two water levels (mean values ± standard deviation for n=10) ..101
Table 6.6: Die swell and SEI of 3G formulations extruded with two water levels of water addition (mean values ± standard deviation for n=10) ..101
Table 6.7: The correlation of width and thickness die swell and expansion to product SEI101
Table 7.1: Demographic characteristics of participants (n= 22) ...107
Table 7.2: Seasoning product sources and their price ..108
Table 7.3: Competitor analysis products...110
Table 7.4: Focus groups 3G snack product prototypes ..110
Table 7.5: Typical themes associated with snack consumption ...112
Table 7.6: Key reasons for choosing extruded snacks ..113
Table 7.7: Key purchase criteria presented by categories and inter-connections between criteria ...118
Table 7.8: Participants’ attitude towards product claims...119
Table 7.9: The importance of product attributes ...122
Table 7.10: Important post-purchase product attributes comparison ...123
Table 7.11: Reasons for participants' like/dislike choices..124
Table 7.12: Acceptability of 3G snack research product prototypes ...125
Table 8.1: Extrusion condition of reformulated ‘CW’ 3G formulation extruded with salt and Flavex (mean values ± standard deviation for n=2) ...130
Table 8.2: Added sodium content for the reformulate ‘CW’ 3G formulation extruded with salt and Flavex ..130
Table 8.3: Pasting properties of reformulated ‘CW’ raw ingredients with salt and Flavex (mean values ± standard deviation for n=2) ..131
Table 8.4: The effect of salt and Flavex on ‘CW’ snack pellet pasting properties (mean values ± standard deviation for n=2) ...131
Table 8.5: Effect of salt and Flavex on the reformulated ‘CW’ snack pellet die swell (mean values ± standard deviation for n=10) ...132
Table 8.6: Comparison of pellet die swell and SEI on original and reformulated ‘CW’ 3G formulation (mean values ± standard deviation for n=10) ...136
Table 8.7: Qualitative sensory assessment on the reformulated cheese flavoured ‘CW’136
Table 8.8: Extrusion condition of ‘RW Salt Hi’ ‘CW Salt Hi’ and ‘RWC Salt Hi’ (mean values ± standard deviation for n=2) ...137
Table 8.9: Pellet moisture loss of reformulated ‘RW’, ‘CW’ and ‘RWC’ 3G snack base formulations on drying (mean values ± standard deviation for n=2)...138
Table 8.10: Summary of pellet Aw change of reformulated ‘RW’, ‘CW’ and ‘RWC’ 3G snack base formulations on drying...138
Table 8.11: Pasting properties of raw ingredients blend from high salt 3G formulations (mean values ± standard deviation for n=2) ...139
Table 8.12: Pasting properties of extruded pellets from high salt 3G formulations (mean values ± standard deviation for n=2) ...139
Table 8.13: Width and thickness expansion analysis of high salt 3G formulation (mean values ± standard deviation for n=10) ...140
Table 8.14: Die swell and SEI of reformulated high salt 3G formulation (mean values ± standard deviation for n=10) ..140
Table 8.15: Physical specifications of high salt 3G pellets (mean values ± standard deviation for n=10) ..141
Table 8.16: Max compressive load force (N) analysis (mean values ± standard deviation for n=3) ..142
Table 8.17: Theoretical and analytical protein, total fat and total dietary fibre of high salt 3G base formulations (mean values ± standard deviation for n=3) ...143
Table 8.18: Protein, fat and dietary fibre contents of commercial savoury snacks (data collected from product nutrition information panel) ..144
Table 9.1: Effect of ingredients on pasting properties and expansion of 3G snack formulation (usage change from low to high limit) ...147
Table 9.2: Effect of different types of fibre on 3G pellet drying, checking and expansion (usage change from low to high limit) ...149
Table 9.3: Raw material cost for 3G extruded snack base formulations ..150
Table 9.4: Third generation extruded snack base recipe with ancient grains.....................................151
Table 9.5: Effect of water and salt on the extrusion process and pellet expansion (usage change from low to high limit) ..152
Table A.1: Typical starch content of in raw ingredients ...333
Table A.2: Approximate starch contents of fibre enriched 3G formulations334
Table A.3: Typical fibre and moisture contents of raw ingredients ..335
Table A.4: Typical dry matter content of the fibre enriched 3G formulations335
Table A.5: Calculation example of 'Control' fibre content
LIST OF NOMENCLATURES

Ancient grains generally refer to a group of cereal grains or pseudo-cereals that are largely unchanged over the last several hundred years. The most common ancient grains are native to South America including amaranth, quinoa, barley, chia, buckwheat, kamut®, sorghum, millet, spelt and teff.

Beneo GR is a water soluble dietary fibre consisting mainly of chicory inulin, GR stands for granulated powder (details can be found in Appendix A 1.4).

Beneo Hi is a 3G base formulation made from coarse rice flour, wholemeal wheat flour (31 %), potato starch, ancient grain blend, white sugar, nut brown flour and salt. Beneo GR (4 %) was added to the 3G base formulation and extruded using a Clextral BC21 twin screw co-rotating extruder (Firminy Cedex, France) at screw speed 251 rpm, water rate 1.7 kg/h and feed rate dial 60.

Beneo Lo is a 3G base formulation made from coarse rice flour, wholemeal wheat flour (31 %), potato starch, ancient grain blend, white sugar, nut brown flour and salt. Beneo GR (2 %) was added to the 3G base formulation and extruded using a Clextral BC21 twin screw co-rotating extruder (Firminy Cedex, France) at screw speed 251 rpm, water rate 1.7 kg/h and feed rate dial 60.

Breakdown (BD) is the peak viscosity minus the viscosity after the holding period at 95 ºC in a RVA analysis.

Carbohydrate by difference is calculated by subtracting from 100, the average quantity expressed as a percentage of water, protein, fat, dietary fibre, ash, alcohol, and any other unavailable carbohydrate (FSANZ Standard 1.2.8).

Cold Peak (CP) is the maximum cold water viscosity observed at 25 ºC in a RVA analysis.

CW is a 3G base formulation made from maize polenta, wholemeal wheat flour (31 %), potato starch, ancient grain blend, white sugar, nut brown flour and salt (0.5 %). Wheat fibre 600 (4 %) was added to the 3G base formulation.

CW Water Hi is the 3G base formulation ‘CW’ extruded using a Clextral BC21 twin screw co-rotating extruder (Firminy Cedex, France) at screw speed 251 rpm, water rate 1.7 kg/h and feed rate dial 88.

CW Water Lo is the 3G base formulation ‘CW’ extruded using a Clextral BC21 twin screw co-rotating extruder (Firminy Cedex, France) at screw speed 251 rpm, water addition rate 1.0 kg/h and feed rate dial 70.
CW Salt Hi is a 3G base formulation made from maize polenta, wholemeal wheat flour (30 %), potato starch, ancient grain blend and salt (1 %). Wheat fibre 600 (4 %) was added to the 3G base formulation.

Die conductance measures the magnitude of the resistance to flow. The die conductance (k) is a function of die geometry and material of construction.

Die swell is the overall expansion of a pellet. It was calculated by dividing the dimension of the pellet by dimension of the die opening.

Flavex is a vegetable protein extract produced by the acid hydrolysis of vegetable proteins. It has an intense savoury flavour and has been used as a flavour enhancer (details can be found in section A 1.5 of Appendix 1).

Hi-Maize™ 1043 is a natural, unmodified, high amylose resistant starch made from maize (details can be found in Appendix A 1.4).

Hi-Maize Hi is a 3G base formulation made from coarse rice flour, wholemeal wheat flour (31 %), potato starch, ancient grain blend, white sugar, nut brown flour and salt. Hi-Maize™ 1043 (7 %) was added to the 3G base formulation and extruded using a Clextral BC21 twin screw co-rotating extruder (Firminy Cedex, France) at screw speed 251 rpm, water rate 1.7 kg/h and feed rate dial 60.

Hi-Maize Lo is a 3G base formulation made from coarse rice flour, wholemeal wheat flour (31 %), potato starch, ancient grain blend, white sugar, nut brown flour and salt. Hi-Maize™ 1043 (3.5 %) was added to the 3G base formulation and extruded using a Clextral BC21 twin screw co-rotating extruder (Firminy Cedex, France) at screw speed 251 rpm, water rate 1.7 kg/h and feed rate dial 60.

Nut brown flour is a light to medium brown finely grounded wholegrain meal with negligible diastatic activity. It is produced by milling crystal malted barley. It has pleasant roasted aroma and slightly bitter sweet in taste (details can be found in section A1.5 of Appendix 1).

Pasting temp is the temperature in a RVA analysis where viscosity first increases by at least 25 cP over a 20 s period. It provides an indication of the minimum temperature required to cook a given sample.

Peak viscosity (PV) is the maximum paste viscosity achieved during the heating cycle of a RVA analysis;

Peak time (PT) is time when maximum paste viscosity achieved in a RVA analysis;
Pellet checking is the hairline crack on or under the surface of the pellets. The formation of checking is pellet cannot deform enough to relax stresses causing by pellet drying before entering the glassy state. Pellet shrinks on losing moisture and the dry outside region will try to contract onto the wet core. Hence the outside of the pellet will be under tension and the core under compression. Checking can occur either during the drying cycle or as long as several weeks after the product has been packaged.

RW is a 3G base formulation made from coarse rice flour, wholemeal wheat flour (31 %), potato starch, ancient grain blend, white sugar, nut brown flour and salt (0.5 %). Wheat fibre 600 (4 %) was added to the 3G base formulation.

RW Water Hi (WF Hi) is the 3G base formulation ‘RW’ extruded using a Clextral BC21 twin screw co-rotating extruder (Firminy Cedex, France) at screw speed 251 rpm, water rate 1.7 kg/h and feed rate dial 60.

RW Water Lo is the 3G base formulation ‘RW’ extruded using a Clextral BC21 twin screw co-rotating extruder (Firminy Cedex, France) at screw speed 251 rpm, water addition rate 1.0 kg/h and feed rate dial 60.

RW Salt Hi is a 3G base formulation made from coarse rice flour, wholemeal wheat flour (30 %), potato starch, ancient grain blend and salt (1 %). Wheat fibre 600 (4 %) was added to the 3G base formulation.

RW Salt Lo is a 3G base formulation made from maize polenta, wholemeal wheat flour (30 %), potato starch, ancient grain blend and salt (1.0 %). Wheat fibre 600 (4 %) was added to the 3G base formulation.

RWC is a 3G base formulation made from coarse rice flour, potato starch, wholemeal wheat flour (21 %), Hi-Maize wholegrain flour (10 %), ancient grain blend, white sugar, nut brown flour and salt (0.5 %). Wheat fibre 600 (4 %) was added to the 3G base formulation.

RWC Water Hi is the 3G base formulation ‘RWC’ extruded using a Clextral BC21 twin screw co-rotating extruder (Firminy Cedex, France) at screw speed 251 rpm, water rate 1.7 kg/h and feed rate dial 85.

RWC Water Lo is the 3G base formulation ‘RWC’ extruded using a Clextral BC21 twin screw co-rotating extruder (Firminy Cedex, France) at screw speed 251 rpm, water addition rate 1.0 kg/h and feed rate dial 70.

RWC Salt Hi is a 3G base formulation made from coarse rice flour, wholemeal wheat flour (20 %), potato starch, Hi-Maize wholegrain flour (10 %), ancient grain blend and salt (1 %). Wheat fibre 600 (4 %) was added to the 3G base formulation.

Salt Hi is a 3G base formulation made from maize polenta, wholemeal wheat flour (30 %), potato starch, ancient grain blend and salt (1.0 %). Wheat fibre 600 (4 %) was added to the 3G base
formulation and extruded using a Clextral BC21 twin screw co-rotating extruder (Firminy Cedex, France) at extruder screw speed 251 rpm, water rate 1.0 kg/h and the feed rate dial 75.

Salt Hi&Flavex is a 3G base formulation made from maize polenta, wholemeal wheat flour (30 %), potato starch, ancient grain blend, salt (1.0 %) and Flavex (0.3 %). Wheat fibre 600 (4 %) was added to the 3G base formulation and extruded using a Clextral BC21 twin screw co-rotating extruder (Firminy Cedex, France) at extruder screw speed 251 rpm, water rate 1.0 kg/h and the feed rate dial 80.

Salt Lo is a 3G base formulation made from maize polenta, wholemeal wheat flour (30 %), potato starch, ancient grain blend and salt (0.5 %). Wheat fibre 600 (4 %) was added to the 3G base formulation and extruded using a Clextral BC21 twin screw co-rotating extruder (Firminy Cedex, France) at extruder screw speed 251 rpm, water rate 1.0 kg/h and the feed rate dial 75.

Salt Lo&Flavex is a 3G base formulation made from maize polenta, wholemeal wheat flour (30 %), potato starch, ancient grain blend and salt (0.5 %) and Flavex (0.3 %). Wheat fibre 600 (4 %) was added to the 3G base formulation and extruded using a Clextral BC21 twin screw co-rotating extruder (Firminy Cedex, France) at extruder screw speed 251 rpm, water rate 1.0 kg/h and the feed rate dial 75.

Setback (SB) is difference between the final viscosity and the viscosity reached after the first holding period in a RVA analysis.

Starch dextrinisation is a process known as a certain degree of fragmentation during extrusion cooking, a decrease in high molecular weight material and a corresponding increase in lower molecular weight polysaccharide.

WF Hi (RW Water Hi) is a 3G base formulation made from coarse rice flour, wholemeal wheat flour (31 %), potato starch, ancient grain blend, white sugar, nut brown flour and salt. Wheat fibre 600 (4 %) was added to the 3G base formulation and extruded using a Clextral BC21 twin screw co-rotating extruder (Firminy Cedex, France) at screw speed 251 rpm, water rate 1.7 kg/h and feed rate dial 60.

WF Lo is a 3G base formulation made from coarse rice flour, wholemeal wheat flour (31 %), potato starch, ancient grain blend, white sugar, nut brown flour and salt. Wheat fibre 600 (2 %) was added to the 3G base formulation and extruded using a Clextral BC21 twin screw co-rotating extruder (Firminy Cedex, France) at screw speed 251 rpm, water rate 1.7 kg/h and feed rate dial 60.

Wheat Fibre 600 is a creamy white, microfine water insoluble dietary fibre produced by a special process from the structure building components of the wheat plant according to the supplier specification (details can be found in Appendix A 1.4).