Combining Tn-seq with comparative genomics identifies proteins uniquely essential in Shigella flexneri

Nikki Freed¹,²,⁴, Dirk Bumann¹, and Olin Silander²,³

¹Infection Biology, Biozentrum, University of Basel, Basel, Switzerland ²Institute of Natural and Mathematical Sciences, Massey University, Auckland, New Zealand ³Computational and Systems Biology, Biozentrum, University of Basel, Basel, Switzerland ⁴presenting author

Introduction

We combined transposon mutagenesis with high-throughput sequencing to quantify gene essentiality in Shigella flexneri, a pathogenic bacterium.

We then compared gene essentiality in Shigella with the orthologous genes in Escherichia coli K12. These two strains share 99.5% identity in their 16S RNA genes, a common measure of relatedness.

Methods

We constructed a high density transposon insertion library in the bacterial pathogen Shigella flexneri. We then sequenced and mapped the locations of all transposon insertion sites (188,895 unique insertions) in the genome and on the ~200Kb virulence plasmid.

Mapping the transposon insertions, we found many regions in which few or no insertions occurred.

Quantitative analyses showed that regions containing no transposon insertions for 100bp or more were considerably enriched.

It is likely that many of these regions are critical for cellular growth in Shigella. Indeed, we found that for many of the protein-coding genes in these regions, the orthologous E. coli genes are known to be essential. As “gold standards” of essentiality we used data from two studies of the effects of gene deletion on growth in E. coli K12: the Keio collection (Baba, Ara et al. 2006) and the PEC study (Kato and Hashimoto 2007).

Results

Our results suggest that 471 protein-coding genes in Shigella are critical for cellular growth in rich media. For many of the uninterrupted Shigella genes, the orthologous E. coli genes are known to be essential, or their deletion results in severe growth defects.

Interestingly, the data provide no evidence that any genes are essential in E. coli but not in Shigella. We found a number of genes that are essential in Shigella but whose deletion in E. coli has no effect on growth. Several of these genes have been computationally predicted as essential (Joyce et al. 2008; blue arrow in figure at left).

We also found two functionally related sets of genes that stand out as essential in Shigella but whose deletion has no effect on growth in E. coli. First, the genes proA, proB, and proC are interrupted in our Shigella transposon library, but their deletion causes little to no growth defect in E. coli. One possible explanation for this is that Shigella cannot efficiently transport proline, resulting in a requirement for the proline biosynthetic pathway despite growth in rich media. The second set of genes are those in the rfb operon. These all play a role in sugar nucleotide biosynthesis, suggesting that this pathway is uniquely essential in Shigella.

Conclusions

The data here suggest that the essential gene complement of Shigella flexneri differs only slightly from the closely related bacterium Escherichia coli K12.

While few, if any, genes are essential in E. coli but not Shigella, several appear essential in Shigella but not E. coli. One reason for this change sShigella frequently lives as an intracellular pathogen, and may have lost some of the functional redundancy that is present in E. coli K12. This is not necessarily due solely to genetic drift; in some cases, this may have occurred through direct selection for increased virulence, which has resulted in the inactivation of certain genes being selectively advantageous. Finally, we note that the discrepancies in essentiality between these two bacteria may be exploited to develop antibiotics that have strain-specific effects.
Combining Tn-seq with comparative genomics identifies proteins uniquely essential in Shigella flexneri

Silander, O

2015-09-03