Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Abstract

Currently, digital signal processing systems typically assume that the signals are bandlimited. This is due to our knowledge based on the uniform sampling theorem for bandlimited signals which was established over 50 years ago by the works of Whittaker, Kotel’nikov and Shannon. However, in practice the digital signals are mostly of finite length. This kind of signals are not strictly bandlimited. Furthermore, advances in electronics have led to the use of very wide bandwidth signals and systems, such as Ultra-Wide Band (UWB) communication systems with signal bandwidths of several giga-hertz. This kind of signals can effectively be viewed as having infinite bandwidth. Thus there is a need to extend existing theory and techniques for signals of finite bandwidths to that for non-bandlimited signals.

Two recent approaches to a more general sampling theory for non-bandlimited signals have been published. One is for signals with finite rate of innovation. The other introduced the concept of consistent sampling. It views sampling and reconstruction as projections of signals onto subspaces spanned by the sampling (acquisition) and reconstruction (synthesis) functions. Consistent sampling is achieved if the same discrete signal is obtained when the reconstructed continuous signal is sampled. However, it has been shown that when this generalized theory is applied to the de-interlacing of video signals, incorrect results are obtained. This is because de-interlacing is essentially a resampling problem rather than a sampling problem because both the input and output are discrete. While the theory for the resampling for bandlimited signals is well established, the problem of resampling without bandlimited constraints is largely unexplored.
The aim of this thesis is to develop a resampling theory for non-bandlimited discrete signals and explore some of its potential applications. The first major contribution is the theory and techniques for designing an optimal resampling system for signals in the general Hilbert Space when noise is not present. The system is optimal in the sense that the input of the system can always be obtained from the output. The theory is based on the concept of consistent resampling which means that the same continuous signal will be obtained when either the original or the resampled discrete signal is presented to the reconstruction filter.

While comparing the input and output of a sampling/reconstruction system is relatively simple since both are continuous signals, comparing the discrete input and output of a resampling system is not. The second major contribution of this thesis is the proposal of a metric that allows us to evaluate the performance of a resampling system. The performance is analyzed in the Fourier domain as well. This performance metric also provides a way by which different resampling algorithms can be compared effectively. It therefore facilitates the process of choosing proper resampling schemes for a particular purpose.

Unfortunately consistent resampling cannot always be achieved if noise is present in the signal or the system. Based on the performance metric proposed, the third major contribution of this thesis is the development of procedures for designing resampling systems in the presence of noise which is optimal in the mean squared error (MSE) sense. Both discrete and continuous noise are considered. The problem is formulated as a semi-definite program which can be solved efficiently by existing techniques.

The usefulness and correctness of the consistent resampling theory is demonstrated by its application to the video de-interlacing problem, image processing, the demodulation of ultra-wideband communication signals and mobile channel detection. The results show that the proposed resampling system has many advantages over existing approaches, including lower computational and time complexities, more accurate prediction of system performances, as well as robustness against noise.
Acknowledgments

First of all, I would like to express my sincere thanks to my supervisor, Dr Edmund Lai, for his continuous support and invaluable guidance throughout my postgraduate studies. He has led me into the fantastic world of digital signal processing. The many fruitful discussions with him are the inspiration for this dissertation. I also thank Dr A. P. Vinod for his co-supervision and great help while I was transferring to Massey University.

I owe my gratitude to staff at the Institute of Information Science & Technology. They provided me with an excellent environment and support for my work. I thank Ms Minyi Orams for her helpful coordination. I also thank Mr Michael O’Brien and Mr Adams Stephen for providing me all the equipment and software that I needed for my research.

I was with School of Computer Engineering (SCE), Nanyang Technological University (NTU), Singapore in the early stages of my studies. Dr Guan Yong Liang, Dr Peter Chong, and Dr Ng Boon Chong had been helpful in providing me with an understanding of wireless communication systems. My special thanks to Dr Henry Lew, Dr Sirajudeen Gulam Razul for their great tips in pure mathematics. I also thank NTU for their financial support during my studies there.

I thank all my colleagues and friends at the SCE, NTU. They helped me to escape from lectures and made sure I was on time for all assignments. My thanks to Ms Xiao Shu, for her effort in maintaining the research group server and suggestions in formatting this dissertation. I thank my friend Ms Li Wei, Ms Li Te, Mr Zhang Yan and many
others whom I have pleasure of sharing time with. You all made my life cheerful and easy to handle.

Lastly, my deepest appreciation goes to my parents for their unconditional love, support, understanding throughout my whole life. I dedicate this thesis to them.
Contents

Abstract ... i
Acknowledgments ... iii
List of Figures .. x
List of Tables .. xiii

1 Introduction 1
1.1 Background and Motivation .. 1
1.2 Scope and Objectives ... 5
 1.2.1 Assumptions .. 5
 1.2.2 Objectives ... 6
1.3 Significance .. 6
1.4 Original Contributions ... 7
1.5 Thesis Organization ... 9

2 Review of Sampling and Resampling Techniques 11
2.1 Bandlimited Signals ... 12
 2.1.1 Shannon’s Sampling Theory 12
 2.1.2 Resampling ... 13
2.2 Sampling Non-bandlimited Signals 15
 2.2.1 Interpolation 18
 2.2.2 Quasi-Interpolation 18
 2.2.3 Convolution Based Least Square 19
2.3 Special Acquisition and Synthesis Functions 22
 2.3.1 Splines .. 22
 2.3.2 Wavelets 28
2.4 Consistent Sampling 30
2.5 Sampling Signals with Finite Rates of Innovation 35
2.6 Resampling Non-bandlimited Signals 40
 2.6.1 Performance of Resampling 41
 2.6.2 Oblique Interpolation Method 43
 2.6.3 Quasi Interpolation Method 44
2.7 De-interlacing 46

3 Noiseless Consistent Resampling 50
 3.1 Problem Formulation 51
 3.1.1 Mathematical Model 51
 3.1.2 Consistent Resampling Defined 53
 3.1.3 Physical Justification 54
 3.2 Consistent Resampling Systems 56
 3.2.1 Correction Filter 56
6.2.2 Application to Consistent Resampling Theory ... 158

6.3 Summary ... 160

7 Conclusions and Future Works ... 161

7.1 Conclusions ... 161

7.2 Further Research ... 163

7.2.1 Multidimensional and Multirate Systems .. 163

7.2.2 Communication Systems .. 164

7.2.3 Sensor Networks ... 164

7.2.4 Compressive Sensing ... 165

A Appendices .. 166

A.1 List of Notations ... 166

A.2 List of Abbreviations ... 167

A.3 Semidefinite Programming .. 168

A.4 List of Publications ... 171

References .. 172
List of Figures

1.1 A general digital signal processing system. .. 2
1.2 Sampling and reconstruction. .. 2
1.3 Block diagram of a sample rate conversion system. 2
2.1 The sampling and reconstruction system. ... 13
2.2 Block representation of the SRC system. .. 14
2.3 Spectra of the signals for the sample rate conversion system in Figure 2.2
for $L/M = 3/2$. ... 16
2.4 Block diagram of a sampling and reconstruction system with general ac-
quisition and synthesis functions. ... 20
2.5 Zero-th to third order B-spline functions. .. 24
2.6 The sampling system using B-spline as synthesis filter 26
2.7 The sampling system using B-spline as synthesis filter 28
2.8 The mother function for some well known wavelets 30
2.9 Geometric interpretation of the effect of the correction filter (taken from [1]). 31
2.10 Generalized sampling and reconstruction. ... 32
2.11 Interlaced and de-interlaced signals. .. 47
2.12 The de-interlacing process. The horizontal axis denotes the input fields while the vertical axis denotes the scan lines. The motion vector a relates to the velocity of the scene by $a = 1 - v$.

3.1 A resampling system with generalized interpolating and resampling functions.

3.2 The consistent resampling system with the correction filter.

3.3 The resampling system with continuous correction filter.

3.4 De-interlacing system modeled as a multichannel system.

3.5 Transmission scheme for a PPM-UWB signal.

3.6 The modulated signal $\hat{f}(t)$.

3.7 First order differentiation of $\hat{f}(t)$.

3.8 Direct Transform to obtain the B-spline coefficients of signal $x(t)$.

3.9 Differentiate a discrete sequence using B-spline.

3.10 Causal and anti-causal implementation of IIR filter.

3.11 The original test images.

3.12 The Rays image after eight consecutive enlargements followed by eight consecutive reductions.

3.13 The Lena image after eight consecutive enlargements followed by eight consecutive reductions.

3.14 The Head image after eight consecutive enlargements followed by eight consecutive reductions.

3.15 The Peppers image after eight consecutive enlargements followed by eight consecutive reductions.
3.16 Using a 5th order correction filter on the Rays image.
3.17 Illustration of decomposed rotation process.
3.18 After twelve rotations of 30° by classic resampling.
3.19 After twelve rotations of 30° by consistent resampling.

4.1 Resampling performance when the signal is bandlimited.
4.2 The reformed resampling system for performance analysis.
4.3 The resampling and post filtering part of resampling process.
4.4 The geometric interpretation of the resampling metric.
4.5 Square root of the error kernels for four resampling schemes when an image is enlarged by 25%.
4.6 Square root of the error kernels for four resampling schemes when the image is reduced to 80% of its original size.
4.7 Comparison of the resampling performance when the image is enlarged by 25% and reduced by 20%.

5.1 A consistent resampling system with correction filter.
5.2 A consistent resampling system with discrete noisy input.
5.3 Resampling system with noise added to the interpolated signal.
5.4 The image of Lena.
5.5 The restored image by Wiener Filter
5.6 The restored image by the correction filter
5.7 Performances of PSAM where channel interpolation is by consistent correction filtering and by a Hamming windowed sinc function.
List of Tables

2.1 Approximation of the frequency responses of B-spline up to order 3 25

3.1 The desired and the estimated values of t_k. 75

3.2 Value of $y[k]$. All other elements of $y[k]$ are zero. 77

3.3 Value of $h[k]$. All other elements of $h[k]$ are zero. 78

3.4 The correction filters and their frequency responses. 84

3.5 PSNR for image zoomed out by 1.25 for 8 consecutive times, followed by
zoomed in by 0.8 for 8 consecutive times. 86

3.6 PSNR (dB) after 12 rotations of 30°. 97