Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Integration of Taguchi's Robust Parameter Design Approach in a Mature Lean Manufacturing Environment - The Case of the Apparel Industry

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Technology at Massey University, Manawatu, New Zealand.

Pramila Gamage

2015
Abstract

It has been documented in the literature that combining overlapping manufacturing practices lead to superior performance. The primary driver of this study is the conceptual overlap the researcher identified between the zero waste proposition in Lean and the zero defects (loss to society) proposition in Taguchi’s Quality Philosophy (TQP); TQP provides the backbone of Taguchi’s robust parameter design (RPD) approach, a statistically driven experimental method that enables engineers to identify optimum design parameter settings to make the product’s functionality robust against the background variables (noise). This study hypothesises that Taguchi’s RPD approach complements Lean. This overall hypothesis was examined in two phases.

First, through the literature, the researcher hypothesised the theoretical relationships between TQP and Lean, through the mediating role being played by Continuous Improvement to explain Manufacturing Outcomes. This model was tested through Structural Equation Modelling using data collected from 318 respondents in 31 apparel manufacturing factories belonging to a mature Lean organisation in Sri Lanka. The researcher found that the model was a good fit to data (e.g. RMSEA = 0.047), which suggested that her hypothesised theoretical model is tenable and that TQP is acceptable to Lean practitioners as an avenue to improve manufacturing performance.

Next, the researcher examined the practical compatibility between Taguchi’s RPD approach and Lean through extensive fieldwork in one of the factories in the Lean organisation. The work involved conducting RPD experiments to solve a substantial quality problem, (which helped the researcher to identify the merits and demerits of Taguchi methods) and also permitted ethnographic engagement with the factory staff. This enabled the researcher to explore the drivers and restraints of integrating Taguchi’s RPD in the setting studied. The merits of Taguchi’s RPD were found to be the high degree of standardisation, ease of conducting the experiment and analysing the data, and compatibility with the Lean culture. The researcher identified 5 drivers (also 3 inhibitors) out of which, the most influential drivers were: (a) the experienced ineffectiveness of the existing tools and techniques being used, (b) non-value adding activities associated with machine setting up, and (c) conduciveness to conduct large Taguchi style experiments. Using Force Field Analysis as the theoretical framework, the researcher explained how Lean organisation, similar to the one being considered, can move towards using Taguchi’s RPD as a tool for process improvement. The study identified several future research directions for practitioners and academics.
Acknowledgements

If I did not how complex a doctoral research project is four years ago, now I know what it is like to complete a substantial research project. If not for many people who helped me in various ways during the good times and bad times, I would not have been able to achieve my project goals to level of satisfaction that I enjoy now. First, I would like to thank my supervisor Dr. Nihal Jayamaha for his guidance and patience and tracking my academic progress and my general wellbeing. I am grateful to my co-supervisor A/Prof. Nigel Grigg for his guidance, support, encouragement, and humility.

I would next thank the Higher Education for the Twenty First Century (HETC) Project, Sri Lanka, for funding my research partially. I also thank my employer, University of Peradeniya, Sri Lanka for granting me study leave. Specifically I thank Dr. Manjula Nanayakkara and Prof. S. D. Pathirana in the faculty of Engineering for encouraging me to pursue doctoral studies. I also thank Dr. Ms. Risheeka Ekanayake for the support and advice given to me on administrative matters concerning my study leave.

I also owe a big thank to the management of the Lean apparel organisation for allowing me to collect data. While my list of staff members of this organisation to whom I would have liked to have thanked approaches 60, it would be rude if I did not mention the names of Mr. Kapila Hapangama and Mr. Indika Guruge. I am particularly thankful to the ladies in the sewing department for their immense support whilst I was conducting my field studies. Interacting with you and your managers were one of the best parts of my study. I would also like to convey my gratitude for the administration staff of the School of Engineering and Advanced Technology (SEAT), Massey University—particularly Michele Wagner, Linda Lowe, and Dilantha Punchihewa—Massey residential service office, financial department, GRS, International office, and the librarians for their immense support throughout my study period.

Last, but not least, I would like to thank my Family. Thank you mother (Anula Subasinghe) for raising me up and thank you brother (Ranil Gamage) for the hard yards you did to educate me and bring me to what I am now. I must also thank my beloved husband Bhathiya Jayawardana for love, encouragement, support, care, understanding, and looking after me. I also thank my sister-in-law, niece, and my husband’s family for their understanding and good wishes. I love and respect all of you from the bottom of my heart.

Pramila Gamage

03 December 2015
Table of Contents

Abstract ... i

Acknowledgements ... ii

Table of Contents ... iii

List of Acronyms ... x

List of Figures ... xi

List of Tables .. xiv

CHAPTER 1 INTRODUCTION ... 1

1.1. INTRODUCTION .. 1

1.2. BACKGROUND OF THE STUDY .. 2

1.2.1. Robust Design Methodologies ... 2

1.2.2. Lean Production Systems .. 5

1.3. THE APPAREL INDUSTRY IN SRI LANKA ... 6

1.4. KEY DRIVERS FOR THE RESEARCH .. 7

1.5. RESEARCH QUESTIONS ... 9

1.6. AIM AND OBJECTIVES ... 10

1.6.1. Research Aim ... 11

1.6.2. Research Objectives ... 11

1.6.3. General Research Objective .. 11

1.7. METHODOLOGY OVERVIEW ... 11

1.8. LIMITATIONS AND DELIMITATIONS OF THE STUDY 13

1.9. THE STRUCTURE OF THE THESIS .. 14

CHAPTER 2 LEAN MANUFACTURING SYSTEMS AND RELATED CONCEPTS 19

2.1. INTRODUCTION .. 19

2.2. A LEAN MANUFACTURING SYSTEM .. 21

2.2.1. The Constituents of Lean Thinking .. 23

2.2.2. Lean Consumption ... 28

2.2.3. Operationalising Lean ... 29

2.2.4. Product Development in Lean ... 30

2.2.5. Application of Lean in the Apparel Industry ... 32

2.2.6. Humanistic and Other Criticisms Associated with Lean 33
2.3. STATISTICAL THINKING AND CONTINUOUS IMPROVEMENT 34
 2.3.1. Introducing Statistical Thinking ... 34
 2.3.2. Statistical Thinking in Organisations .. 36
 2.3.3. Continuous Improvement .. 38
 2.3.4. Big-Step Improvement .. 41
 2.3.5. Six Sigma ... 42
 2.3.6. Lean Six Sigma .. 44

2.4. CHAPTER CONCLUSION .. 46

CHAPTER 3 QUALITY AND ROBUST PARAMETER DESIGN 47

3.1. INTRODUCTION .. 47

3.2. PRODUCT QUALITY ASSURANCE ... 48
 3.2.1. Quality by Inspection ... 48
 3.2.2. Quality by Control ... 49
 3.2.3. Quality by Design ... 50

3.3. THE TRADITIONAL DOE APPROACH .. 51

3.4. THE ROBUST DESIGN APPROACH ... 55
 3.4.1. Taguchi’s Robust Parameter Design Approach 58
 3.4.2. The Key Debates on Taguchi’s RPD Approach 63
 3.4.2.1. Taguchi’s Quality Philosophy ... 63
 3.4.2.2. Taguchi’s Prescriptions on Planning and Designing a RPD Experiment 66
 3.4.2.3. The Data Analytic Methods Prescribed by Taguchi 67
 3.4.3. The Response Surface Alternatives to Taguchi’s Robust Parameter Design Approach .. 70
 3.4.4. Application of Taguchi Methods in the Industry 71
 3.4.4.1. General Applications .. 71
 3.4.4.2. Fashion Industry Applications ... 72
 3.4.4.3. Application of Taguchi Methods in Lean Environments 73
 3.4.4.4. RD Implementation Issues in the Industry 75

3.5. DESIGN FOR SIX SIGMA AND ALTERNATIVE RPD APPROACHES 78
 3.5.1. Design for Six Sigma .. 78
 3.5.2. Alternative Robust Design Approaches ... 80

3.6. KNOWLEDGE GAPS AND RESEARCH QUESTIONS 81
 3.6.1. Knowledge Gaps Identified for the Study .. 83
 3.6.1.1. Knowledge Gap 1 ... 83
 3.6.1.2. Knowledge Gap 2 ... 84
CHAPTER 4 THE RESEARCH PARADIGM, EMPIRICAL MODEL BUILDING AND DATA COLLECTION

4.1. INTRODUCTION

4.2. RESEARCH PARADIGMS

4.2.1. The Positivistic and Postpositivistic Paradigms

4.2.2. The Interpretive Paradigm

4.2.3. The Pragmatic Paradigm

4.2.4. Researcher’s Paradigm

4.3. THEORETICAL MODEL BUILDING

4.3.1. The Hypotheses

4.3.2. Boundary Conditions and Other Features of the Theory Developed

4.4. DEVELOPMENT OF THE SURVEY QUESTIONNAIRE

4.4.1. Operationalising Lean Manufacturing System

4.4.2. Operationalising Taguchi’s Quality Philosophy

4.4.3. Operationalising Continuous Improvement

4.4.4. Operationalising Manufacturing Process Outcomes

4.5. THE SAMPLING FRAME, RESPONDENTS AND DATA COLLECTION

4.6. TESTING THE QUESTIONNAIRE AND THE THEORETICAL MODEL

4.6.1. Peer Review

4.6.2. Pretesting and Pilot Testing

4.6.3. Verifying the Absence of Common Method Bias

4.6.4. Establishing Construct Validity and Scale Reliability

4.6.5. Model Testing

4.6.6. The Assumptions

4.7. CHAPTER SUMMARY AND CONCLUSION

CHAPTER 5 FIELDWORK AT THE CASE STUDY PRODUCTION FACILITY

5.1. INTRODUCTION

5.2. THE CASE STUDY

5.2.1. Case Study Methodology

5.2.1.1. Justification of the Case Study Approach

5.2.1.2. Typology

5.2.1.3. Rigour
5.2.2. Lean Journey of the Case Study Organisation .. 125
5.2.3. Overview of the Operations at the Factory ... 132
5.2.4. Conformance Quality Issues ... 138

5.3. LAUNCHING THE FIELDWORK ... 138
5.3.1. Breaking the Communication Barrier .. 139
5.3.2. A Summary of Field Activities ... 140
5.3.3. Comprehending the Variation Problem .. 144
5.3.4. Identifying the Experimental Factors .. 146

5.4. THE MEASUREMENT SYSTEM AND THE CAPABILITY OF THE 150
MANUFACTURING PROCESS .. 150
5.4.1. Verifying the Precision of the Measurement System via a Gauge R&R Study
5.4.2. Verifying Process Stability Using Control Charts 155

5.5. DESIGNING AND CONDUCTING THE OPTIMISATION EXPERIMENT
5.5.1. Identifying the Experimental Factors and Their Levels...................... 156
5.5.2. The Design Matrix and Response Data .. 159
5.5.3. The Forerunner Experiment .. 160

5.6. QUALITATIVE RESEARCH METHODS .. 161
5.6.1. Ethnography/Participant Observation ... 161
5.6.2. Qualitative Interviewing ... 163
5.6.3. Focus Groups .. 164
5.6.4. Secondary Analysis of Textual Data .. 164

5.7. THE METHODOLOGY ADOPTED TO UNDERSTAND THE DRIVERS
AND RESTRAINTS OF USING TAGUCHI’s RPD APPROACH 165
5.7.1. Lewin’s Force Field Theory .. 165
5.7.2. Specific Data Collection Methods Used by the Researcher 168
5.7.2.1. Participant Observations .. 168
5.7.2.2. Interviews .. 168
5.7.2.3. Secondary Data .. 169

5.8. CHAPTER CONCLUSION ... 169

CHAPTER 6 FINDINGS ON EMPIRICAL MODEL TESTING AND
IMPLICATIONS ... 171
6.1. INTRODUCTION .. 171
6.2. STRUCTURAL EQUATION MODELLING .. 172
6.2.1. The Covariance Based SEM Approach ... 173
6.2.2. The Partial Least Squares Based SEM Approach 176
6.2.3. Measurement Item Parcelling in CBSEM .. 177
6.3. DESCRIPTIVE STATISTICS OF SURVEY DATA ... 179
6.4. TESTING THE VALIDITY OF THE CONSTRUCTS 180
 6.4.1. Testing the Survey Responses for the Absence of Substantial Common
 Method Bias .. 180
 6.4.2. Testing for Unidimensionality of the Constructs 181
 6.4.3. Survey Item Parcelling Results ... 184
 6.4.4. Testing Scale Reliability ... 185
 6.4.5. Confirmatory Factor Analysis to Establish Factorial Validity of the
 Constructs ... 186
 6.4.6. Convergent Validity and Discriminant Validity of the Measures 188
6.5. TEST RESULTS ON THE RESEARCH HYPOTHESES AND THE
 DISCUSSION ... 190
6.6. CHAPTER CONCLUSION .. 194

CHAPTER 7 OUTCOMES FROM THE ON-FIELD EXPERIMENTS 195
7.1. INTRODUCTION .. 195
7.2. FIELD STUDIES THAT PRECEDED THE EXPERIMENTS 196
 7.2.1. The Analysis of Results of the Gauge R&R Study 196
 7.2.2. Understanding Process Stability and Capability 201
7.3. VARIATION REDUCTION/QI EXPERIMENTS .. 203
 7.3.1. Crossed-Array Approach/Taguchi Methods (Method I) 206
 7.3.1.1. The Confirmation Runs ... 209
 7.3.1.2. The Financial Impact Assessment .. 210
 7.3.2. Combined-Array Approach/Conventional DoE Approach (Method II) 211
 7.3.3. The Response Function for the Back-Coverage 216
7.4. DISCUSSION: STATISTICAL AND OPERATIONAL MERITS/
 DEMERITS OF TAGUCHI METHODS .. 221
 7.4.1. Organisational Culture ... 225
 7.4.2. Product Type, Technology, and Human Capital 226
 7.4.3. Science and Objectivity ... 227
 7.4.4. Adopting Taguchi’s RPD Approach in a Lean Culture 227
7.5. CHAPTER CONCLUSION ... 228

CHAPTER 8 THE DRIVERS AND RESTRAINTS FOR THE APPLICATION
 OF TAGUCHI METHODS IN A MATURE LEAN APPAREL ENVIRONMENT
 AND RECOMMENDATIONS FOR CHANGE .. 231
8.1. INTRODUCTION .. 231
8.2. THE FORCE FIELD ANALYSIS ... 232
8.2.1. The Drivers ... 234
8.2.1.1. Ineffectiveness of Existing Problem Solving Tools (Driver D1) ... 234
8.2.1.2. Availability of Standard Approach to Implement RPD (Driver D2) ... 236
8.2.1.3. Repetitive Production Runs (Driver D3) ... 238
8.2.1.4. Non-value Adding Activities Associated with Machine Setting Up (Driver D4) ... 239
8.2.1.5. Conduciveness to Conduct Large Experiments (Driver D5) ... 241
8.2.2. The Restraints ... 242
8.2.2.1. Product Design and Development Being External to the Factory (Restraint R1) ... 242
8.2.2.2. Managers’ Statistical Knowledge and Their Apprehension on Statistics (Restraint R2) ... 243
8.2.2.3. The Nature of the Product (Restraint R3) ... 244

8.3. PRACTICAL RECOMMENDATIONS FOR MOVING TOWARDS THE DESIRED GOAL OF USING TAGUCHI METHODS AS THE DEFAULT OPTION TO SOLVE VARIATION PROBLEMS RELATED TO ROBUSTNESS ... 245
8.3.1. Educating the Managers on Taguchi Methods ... 246
8.3.2. Leverage on the Strengths of the Taguchi Methods and Avoid Situations in Which the Methods are Likely to Become Ineffective ... 247
8.3.3. Show a Clear Connection Between Lean and Taguchi Methods ... 248
8.3.4. Collaborate with the Customer in Product Development ... 248

8.4. CHAPTER CONCLUSION ... 249

CHAPTER 9 CONCLUSIONS ... 251
9.1. INTRODUCTION ... 251
9.2. RUNNING THROUGH THE KEY RESEARCH DRIVER, KNOWLEDGE GAPS, RESEARCH QUESTIONS, AND RESEARCH OBJECTIVES ... 251
9.3. CONCLUSION ON THE FINDINGS BASED ON EACH RESEARCH OBJECTIVE ... 256
9.3.1. Findings on Objective 1 ... 256
9.3.2. Findings on Objective 2 ... 259
9.3.3. Findings on Objective 3 ... 260
9.3.4. Findings on the General Research Objective ... 262
9.4. THE ORIGINAL CONTRIBUTION AND FUTURE RESEARCH ... 263
9.4.1. The Original Contribution of the Study ... 263
9.4.2. Future Research Directions ... 264
9.4.2.1. Augmenting the Model ... 265
9.4.2.2. Widening the Sampling Frame for External Validity ... 265
9.4.2.3. A Longitudinal Study for Enhancing Practical Validity......................266
9.4.2.4. A Multiple Case Study...266

9.5. A RETPROSPECTIVE LOOK AT SIX SIGMA STYLE QUALITY
IMPROVEMENT METHODS IN RELATION TO LEAN AND TAGUCHI’S
RPD APPORACH...267

9.6. FINAL THOUGHTS ...270

9.6.1. Data Collection in Some Settings Involves Not Only Immense Work, but
Also Tact and Diplomacy ...270
9.6.2. Knowing the Jargon and the Lingo Beforehand Helps in the Fieldwork....272
9.6.3. Design of Experiments is Seriously Challenging When Human Interactions
are Involved...273
 9.6.3.1. The Regular Cut Versus the Training Cut273
 9.6.3.2. An experienced Worker Versus an Inexperienced Worker274
 9.6.3.3. Workers’ Tacit Knowledge ...274

REFERENCES..277

APPENDICES ..307

APPENDIX A: Survey Questionnaire (English and Sinhala)..........................308
APPENDIX B: Certificate Received by the Candidate for the Best Paper Award318
APPENDIX C: Massey University Human Ethics Approval – Low Risk319
APPENDIX D: Results of the Preliminary Experiment Conducted320
APPENDIX E: Important Correlation Matrices and Frequency Distribution Plots of the
Measures ..335
APPENDIX F: The Financial Impact of the QI Experiment340
APPENDIX G: The Combined Array for the Response Surface Approach347
APPENDIX H: The Results of the Main Experiment for Response Variables of
Secondary Importance ...349
APPENDIX I: A Sample of Quality Tools Collected from the Factory Belonging to the
Case Study Organization ...362
List of Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIAG</td>
<td>American Automotive Industry Action Group</td>
</tr>
<tr>
<td>AMOS</td>
<td>Analysis of Moment Structures</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>AQL</td>
<td>Acceptable Quality Level</td>
</tr>
<tr>
<td>CBSEM</td>
<td>Covariance Based Structural Equation Modelling</td>
</tr>
<tr>
<td>CFA</td>
<td>Confirmatory Factor Analysis</td>
</tr>
<tr>
<td>CFI</td>
<td>Comparative Fit Index</td>
</tr>
<tr>
<td>CI</td>
<td>Continuous Improvement</td>
</tr>
<tr>
<td>DoE</td>
<td>Design of Experiments</td>
</tr>
<tr>
<td>LHS</td>
<td>Left Hand Side</td>
</tr>
<tr>
<td>LSL</td>
<td>Lower Specification Limit</td>
</tr>
<tr>
<td>MSD</td>
<td>Mean Square Deviation</td>
</tr>
<tr>
<td>MSE</td>
<td>Mean Square Error</td>
</tr>
<tr>
<td>NFI</td>
<td>Normed Fit Index</td>
</tr>
<tr>
<td>NPP</td>
<td>Normal Probability Plot</td>
</tr>
<tr>
<td>OA</td>
<td>Orthogonal Array</td>
</tr>
<tr>
<td>PCA</td>
<td>Principal Component Analysis</td>
</tr>
<tr>
<td>PCLOSE</td>
<td>The Closeness of Fit</td>
</tr>
<tr>
<td>PDCA</td>
<td>Plan-DO-Check-Act</td>
</tr>
<tr>
<td>PLSBSEM</td>
<td>Partial Least Squares Based Structural Equation Modelling Approach</td>
</tr>
<tr>
<td>QA</td>
<td>Quality Assurance</td>
</tr>
<tr>
<td>QCO</td>
<td>Quick-Change-Over</td>
</tr>
<tr>
<td>QI</td>
<td>Quality Improvement</td>
</tr>
<tr>
<td>RD</td>
<td>Robust Design</td>
</tr>
<tr>
<td>RE</td>
<td>Robust Engineering</td>
</tr>
<tr>
<td>RHS</td>
<td>Right Hand Side</td>
</tr>
<tr>
<td>RMSEA</td>
<td>Root Mean Square Error of Approximation</td>
</tr>
<tr>
<td>RPD</td>
<td>Robust Parameter Design</td>
</tr>
<tr>
<td>SD</td>
<td>Standard Deviation</td>
</tr>
<tr>
<td>SEM</td>
<td>Structural Equation Modelling</td>
</tr>
<tr>
<td>SNR</td>
<td>Signal-to-Noise Ratio</td>
</tr>
<tr>
<td>SPI</td>
<td>Stitches Per Inch</td>
</tr>
<tr>
<td>TMC</td>
<td>Toyota Motor Corporation</td>
</tr>
<tr>
<td>TPS</td>
<td>Toyota Production System</td>
</tr>
<tr>
<td>TW</td>
<td>Toyota Way</td>
</tr>
<tr>
<td>USL</td>
<td>Upper Specification Limit</td>
</tr>
</tbody>
</table>
List of Figures

Figure 1.1: Articles found in Scopus containing the search word “Taguchi methods”...3

Figure 1.2: The links between the research questions, research objectives, findings and the thesis chapters ...17

Figure 2.1: The overlapping concepts and subject domains that underpin the research 20

Figure 2.2: Relation of value, cost and waste ...24

Figure 2.3: Relationship between statistical thinking and statistical method37

Figure 2.4: Explaining Six Sigma as a quality performance metric43

Figure 3.1: The engineering problem solving method ..52

Figure 3.2: Key topics, themes and key references leading to research questions82

Figure 4.1: The proposed structural model ...95

Figure 5.1: The layout of the factory ...131

Figure 5.2: The factory shop floor ...132

Figure 5.3: Display of the workplace standardisation procedures135

Figure 5.4: Display of performance ...136

Figure 5.5: Inline quality inspection ..137

Figure 5.6: Checking the waist measurement for conformance to specifications137

Figure 5.7: Time line of data collection including fieldwork at the case study factory ...139

Figure 5.8a: Front view of the Thong style garment ...145

Figure 5.8b: Back view of the Thong style garment ...145
Figure 5.9: The cause-and-effect diagram for high variability 148
Figure 5.10: The Pareto diagram for high variability 149
Figure 5.11: Categorisation of total variation in a system 153
Figure 5.12: Placing the template to get the 1 1/4” of displacement from the waist ... 154
Figure 5.13: Coding the garments .. 154
Figure 5.14a: Experimental factors ... 157
Figure 5.14b: Experimental factors ... 157
Figure 5.15: A generic force field model at the state of moving 167
Figure 6.1: The parameterisation of the researcher’s theoretical model in CBSEM ... 174
Figure 6.2: Presentation of descriptive statistics of the respondents 180
Figure 6.3: The scree plot ... 181
Figure 6.4: The structural relationships between constructs and parameter estimates 190
Figure 7.1: Gauge R&R results based on the ANOVA method 198
Figure 7.2: The graphical plots of the Gauge R&R study based on the ANOVA method ... 199
Figure 7.3: The \bar{x} and R chart for back-coverage measurement 202
Figure 7.4: The process capability analysis results .. 203
Figure 7.5: The main effect plots of the SNR .. 207
Figure 7.6: The main effect plots of the back-coverage 208
Figure 7.7: Main effect plots of the three control factors and the three noise factors 212
Figure 7.8: Two way interaction plots between all the factors 212
Figure 7.9: Normal probability plot of effects for the default model 213
Figure 7.10: Normal probability plot of effects for the reduced model.................214

Figure 7.11: Estimated model parameters and the ANOVA results for the final model ...215

Figure 7.12: Interaction plot between noise factor (D) and control factor (B)........216

Figure 7.13: Residual plots for the final model ...217

Figure 7.14: The variance of Y vs B in coded units ...219

Figure 7.15: Contour plot of average back-coverage vs A, B220

Figure 7.16: Contour plot of average back-coverage vs A, B based on extrapolation 220

Figure 7.17: The framework for discussion ...221

Figure 8.1: The force field diagram for the current state of affairs234

Figure 8.2: Weekly machine downtimes before and after introducing new training programmes..241

Figure 9.1: An overview of the study in graphical form..255

Figure 9.2: The structural relationships between constructs and parameter estimates 257
List of Tables

Table 1.1: Exports of Textile and Garments ... 7

Table 2.1: Kaizen Vs Innovation (Kaikaku) ... 41

Table 3.1: The Illustrative Example on Taguchi Methods .. 60

Table 5.1: A Single Case Design vs Multiple Case Design .. 123

Table 5.2: The Operational Improvements the Case Study Factory Achieved by Implementing Lean Over a Period of Five Years – from 2008 to 2012 129

Table 5.3: Comparing and Contrasting XOS with the TPS 130

Table 5.4: A Concise Summary of Fieldwork and Justification 141

Table 5.5: The Composition of the Brainstorming Team ... 147

Table 5.6: The Control Factors and Noise Factors ... 150

Table 5.7: The Control Chart Tests Used in the Study ... 156

Table 5.8: Factors and Levels Used in the Experiment ... 159

Table 5.9: The Orthogonal Array Used for Conducting the Experiment 159

Table 6.1: Indicators of the Measurement Scales and Factor Loadings 182

Table 6.2: Measures of Scale Reliability ... 186

Table 6.3: The Global Goodness-of-Fit Statistics of the CFA and the Theoretical Model ... 187

Table 6.4: The Factor Loadings and Cross Loadings .. 189

Table 6.5: The Research Questions Answered and the Research Objectives Achieved ... 194

Table 7.1: The Back-Coverage Measurement Data ... 197
Table 7.2: The Back-Coverage Measurements Recorded During the Experiment......205
Table 7.3: Back-Coverage Measurements Obtained During the Confirmation Runs..209
Table 7.4: Comparison of Performance Measures Before and After the Experiments 210
Table 7.5: Merits and Demerits of the Taguchi Methods in the Context Studied.......230
Table 8.1: The Compelling and Restraining Forces - The Current Position..................233
Table 9.1: Possible Practical Reasons for Non-Support of H1 and H3..........................258
Table 9.2: Merits and Demerits of the Taguchi Methods in the Context Studied.......260