Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Magneto-structural correlations of Iron-salicylaldoxime clusters.

A dissertation presented in partial fulfilment of the Requirements for the degree of

Doctor of Philosophy

in

Chemistry

at Massey University, Turitea Campus,

New Zealand.

Dunusinghe Nirosha Tharangani De Silva

2015
ABSTRACT

The syntheses and characterisation of polynuclear metal clusters using a series of derivatised salicylaldoxime ligands are described in this thesis. The polynuclear iron clusters contain metallic cores consisting of oxo-centred triangles. It was found that slight modifications of the phenolic oxime ligands can lead to metal clusters with different nuclearities, thus producing a variety of magnetic properties within the materials. The predominant building block in the complexes is a triangular \([\text{Fe}_3\text{O(R-sao)}_3]^+\) (R = alkyl derivative, sao = salicylaldoxime) unit which can self-assemble into more complicated arrays depending on reaction conditions.

A number of ligands containing a single phenolic oxime unit has been synthesised. These ligands have been used to form di-iron (C1), hexairon (C2), and heptairon (C3) complexes.

A second series of ligands containing two double-headed phenolic oxime units linked by diamine straps has been synthesised and fully characterised. Two copper complexes C5 and C7 were crystallised and pyridine also took part in coordination to the copper centres. Three of the iron complexes formed with double-headed oxime ligands are heptairon compounds. The heptairon compounds were all analogous in their iron coordination environment. The hexairon complex (C8) formed from a double-headed oxime was analogous to the complex C2 formed from a single-headed oxime ligand in its iron coordination environment. The tri-iron complex (C10) also contains a metaborate ion. In each case of the heptairon complexes and the hexairon complex, the metallic skeleton of the cluster was based on a trigonal prism in which two \([\text{Fe}_3^{III}\text{O}]\) triangles are fastened together via three helically twisted double-headed oxime ligands. Each of these ligands is present as (L-2H) where the oximic and phenolic O-atoms are deprotonated and the amino N-atoms protonated, with the oxime moieties bridging across the edges of the metal triangles. The identity of the metal ion has a major impact on the nuclearity and topology of the resultant cluster.

The magnetic susceptibility measurements of these iron complexes suggest the presence of strong antiferromagnetic interactions between the metal centres and the Mössbauer analyses confirm the oxidation state of all the iron centres is 3+. The CHN analyses and
other general characterisation allowed verifying and / or modifying the formulae generated by the X-ray analyses.
ACKNOWLEDGEMENTS

I would like to extend my special gratitude and appreciation to my supervisor Associate Professor Paul Plieger for being a tremendous mentor for me. I would like to thank him for encouraging my research and for allowing me to grow as a research scientist. His advice on both research as well as on my career have been priceless. I would also like to thank Professor David Harding, my second supervisor for all the support and advice to produce a good thesis.

I acknowledge all the support of my PhD supervisor, A/P. Paul Plieger and Dr. Ajay Pannu for collecting and solving X-ray data of my metal complexes. Our research collaborator Professor Euan Brechin and his group including Jamie Frost have been immensely supportive by performing magnetic measurements on our iron compounds and sharing their experimental knowledge with us. I am particularly in debt to Dr. Guy Jameson and his student Casie Davies for the Mössbauer analyses done on our iron compounds and important analytical knowledge shared with us.

The members of the PGP group have contributed immensely to my personal and professional time at Massey. The group has been a source of friendships. Especially, I appreciate the friendship and support from Josh Blazek. I am especially grateful for the advice and support of David Lun since I started working in the laboratory. I appreciate all contributions of time of everyone especially, Dr. Pat Edwards in regards to the NMR, Jason Price and Heather Jameson for the synchrotron data collections.

I gratefully acknowledge the funding sources that made my Ph.D. work possible. I was funded by the Institute of Fundamental Sciences (IFS), Massey University, for the fourth year of my Ph.D. and I am also thankful for awarding me the Bailey Bequest Bursary in 2013.

I would like to express my gratitude to a few people, Mrs. Sadaf Naqash, Mrs. Dileepa Wickramanayake, Dr. Krishanthi Jayasundera, Mr. Steve Denby (Engineering Services Technician) and again my supervisor, Associate Professor Paul Plieger, for making my life easy in New Zealand.
Last but not least, I would like to thank my family for all their love and encouragement, for my parents who raised me with love and supported me in all my pursuits. At the end, I would like to express appreciation especially to my brother Dinesh De Silva and Mr. Ivan Warnakulasooriya who have always been there for me in every hardship. Thank you everyone else who has helped me all the way through.

Nirosha De Silva

Massey University

June 2015
PUBLICATIONS AND CONFERENCES ATTENDED

- De Silva et al., Tetrakis(pyridine-\textit{k}N)bis(tetrafluoridoborato-\textit{k}F)copper(II), *Acta Cryst.* 2013, E69.

- NZIC (New Zealand Institute of Chemistry) annual conference 2013. *Poster presented.*

- Southampton-Australia-New Zealand (SANZMAG-1) workshop on molecular magnetism in February 2014. *Poster presented.*

- International Conference of Coordination Chemistry (ICCC) held in Singapore in July 2014. *Poster presented.*
DECLARATION BY THE CANDIDATE

I do hereby declare that the work described in this thesis was carried out by me under the supervision of Associate Professor Paul Plieger and Professor David Harding and a report on this has not been submitted in whole or part to any university or any other institution for another Degree or Diploma. To the best of my knowledge it does not contain any material published or written by another person, except as acknowledged in the text.

Author’s name: D.N.T. De Silva

Date:

Signature:

DECLARATION BY THE SUPERVISORS

This is to certify that this dissertation is based on the work carried by Ms D.N.T. De Silva under our supervision. The dissertation has been prepared according to the format stipulated and is of acceptable standard.

Supervisor 1 Name: A/P Paul Plieger

Date:

Signature:

Supervisor 2 Name: Prof. David Harding

Date:

Signature:
CONTENTS

ABSTRACT .. I
ACKNOWLEDGEMENTS ... III
PUBLICATIONS AND CONFERENCES ATTENDED .. V
DECLARATION ... VI
CONTENTS .. VII
LIST OF FIGURES ... XI
LIST OF TABLES ... XX
ABBREVIATIONS .. XXIII

CHAPTER 1: INTRODUCTION ... 1
 1.1 Objectives .. 1
 1.2 Magnetism .. 1
 1.2.1 Magnetisation (M) / A m⁻¹ ... 2
 1.2.2 Exchange interactions occur in polynuclear clusters 9
 1.3 Single molecule magnets (SMMs) ... 11
 1.3.1 Magnetic properties of iron .. 14
 1.4 Salicylaldoxime-metal clusters .. 15
 1.4.1 Iron complexes ... 15
 1.4.2 Manganese complexes .. 23
 1.5 Phenolic oxime ligands .. 29
 1.5.1 Derivatised salicylaldoximes .. 31
 1.6 Basic techniques .. 33
 1.6.1 X-ray diffraction (XRD) .. 33
 1.6.2 Magnetic measurements .. 34
 1.6.3 Mössbauer spectroscopy .. 37
 1.6.3.1 Theory ... 38
 References .. 41

CHAPTER 2: IRON COMPLEXES OF SINGLE-HEADED SALICYLALDOXIMES 49
 2.1 Salicylaldoximes .. 49
 2.2 Single-headed salicylaldoximes .. 51
 2.2.1 Synthesis of the ligands .. 52
 2.2.2 NMR interpretation of the oximes and their precursor
aldehydes……………………………………………………………………..53

2.3 Complexation reactions and crystallisation…………………………………59
 2.3.1 Crystal structure of L2…………………………………………………..61

2.4 IR spectral analyses of the Fe complexes……………………………………62
 2.4.1 Complex [Fe₂B₂(L1-H)₄(F)₂(O)₂](BF₄)₂(MeOH)₄, C₁·4MeOH………………..63
 2.4.2 Complex [Fe₆O(OH)₇(L1-H)₃(L1-2H)](BF₄)₂(MeOH)₅, C₂·5MeOH………………..70
 2.4.3 Complex Na[Fe₇(OH)₈(L₁₁-2H)₆Py₆](BF₄)₂(H₂O)₆(Py)₃, C₃·6H₂O·3Py……………………………..79

2.5 Results and discussion……………………………………………………84

2.6 Magnetism…………………………………………………………………..86
 2.6.1 Magnetic measurements of the complex C₁……………………………..86
 2.6.2 Magnetic measurements of the complex C₂……………………………..89
 2.6.3 Magnetic measurements of the complex C₃……………………………..91

2.7 Mössbauer spectroscopy……………………………………………………93
 2.7.1 Results and discussion…………………………………………………..93

2.8 Conclusion……………………………………………………………………..97

References………………………………………………………………………..98

CHAPTER 3: METAL COMPLEXES OF DOUBLE-HEADED SALICYLALDOXIMES…………………101

3.1 Double-headed salicylaldoximes…………………………………………101

3.2 Copper complexes of double-headed salicylaldoximes…………………..101
 3.2.1 Complex [Cu₃(L₅-H)₃(Py)₃](BF₄)₂PF₆(H₂O)₃(MeOH)₃, C₅·3H₂O·3MeOH……………………………104
 3.2.2 Complex [Cu₄(L₈-3H)₂Py₂](BF₄)₂(MeOH)(Py), C₇·MeOH·Py………………………………………..108

3.3 Iron complexes of double-headed salicylaldoximes………………….112
 3.3.1 Complex [Fe₃BO₂(L₉-2H)₂(OH)₂(Py)₂] (BF₄)₂(H₂O)₂(MeOH)(Py), C₁₀·2H₂O·MeOH·Py………………112
 3.3.1.1 Magnetic measurements of the complex C₁₀………………….117
 3.3.2 Complex [Fe₆O(OH)₇(L₇-2H)₃](BF₄)₃(H₂O)₇Py, C₈·7H₂O·Py…………………………………….120
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.2.1 Magnetic measurements of the complex, C8·7H2O·Py</td>
<td>124</td>
</tr>
<tr>
<td>3.3.3 Complex Fe₇O₂(OH)₆(L₅-2H)₃Py₆₄PF₆(H₂O)₇Py₃, C₄·7H₂O·3Py</td>
<td>126</td>
</tr>
<tr>
<td>3.3.3.1 Magnetic measurements of the complex, C₄</td>
<td>131</td>
</tr>
<tr>
<td>3.3.4 Complex Fe₇O₂(L₆-2H)₃(OH)₆(Py)₆₅(H₂O)₂, C₆·5PF₆·2H₂O</td>
<td>132</td>
</tr>
<tr>
<td>3.3.4.1 Magnetic measurements of the complex C₆</td>
<td>136</td>
</tr>
<tr>
<td>3.3.5 Complex Fe₇O₂(L₁₀-2H)₃(OH)₆(Py)₆₃(PF₆)₂(H₂O)₃(Py)₂, C₉·3BF₄·PF₆·3H₂O·2Py</td>
<td>138</td>
</tr>
<tr>
<td>3.3.5.1 Magnetic measurements of the complex C₉</td>
<td>142</td>
</tr>
<tr>
<td>3.4 Results and discussion of the crystal structures</td>
<td>143</td>
</tr>
<tr>
<td>3.5 Mössbauer results and discussion of the iron complexes</td>
<td>147</td>
</tr>
<tr>
<td>3.6 Conclusion</td>
<td>152</td>
</tr>
<tr>
<td>References</td>
<td>153</td>
</tr>
<tr>
<td>CHAPTER 4: CONCLUSIONS AND FUTURE APPROACH</td>
<td>155</td>
</tr>
<tr>
<td>4.1 Single- and Double-headed Derivatised Salicylaldoximes</td>
<td>155</td>
</tr>
<tr>
<td>4.2 Dinuclear and Trinuclear iron complexes</td>
<td>156</td>
</tr>
<tr>
<td>4.3 High nuclearity complexes</td>
<td>158</td>
</tr>
<tr>
<td>4.3.1 The hexaiiron complexes</td>
<td>158</td>
</tr>
<tr>
<td>4.3.2 The heptaiiron complexes</td>
<td>160</td>
</tr>
<tr>
<td>4.4 Conclusion</td>
<td>163</td>
</tr>
<tr>
<td>References</td>
<td>165</td>
</tr>
<tr>
<td>APPENDIX A: EXPERIMENTAL</td>
<td>166</td>
</tr>
<tr>
<td>A.1 General Experimental</td>
<td>166</td>
</tr>
<tr>
<td>A.1.1 Reagents and solvents</td>
<td>166</td>
</tr>
<tr>
<td>A.1.2 Synthetic methods</td>
<td>166</td>
</tr>
<tr>
<td>A.1.3 Chromatography</td>
<td>166</td>
</tr>
<tr>
<td>A.1.4 Synthesis and characterisation</td>
<td>167</td>
</tr>
<tr>
<td>A.2 Experimental</td>
<td>171</td>
</tr>
<tr>
<td>A.2.1 Synthesis of single-headed oxime ligands</td>
<td>171</td>
</tr>
<tr>
<td>A.2.2 Synthesis of double-headed oxime ligands</td>
<td>204</td>
</tr>
<tr>
<td>A.2.3 Synthesis of metal clusters</td>
<td>253</td>
</tr>
</tbody>
</table>
References
LIST OF FIGURES

1.1: left: Variation of magnetisation (M) with external magnetic field (H), right: Variation of magnetic susceptibility (χ) with temperature (T) of diamagnets .. 2
1.2: left: Variation of magnetisation (M) with external magnetic field (H), right: Variation of magnetic susceptibility (χ) with temperature (T) of paramagnets .. 3
1.3: Applied magnetic field (H) vs magnetisation (M) in ferromagnetic materials .. 4
1.4: Switch from paramagnetism to ferromagnetism .. 4
1.5: Hysteresis loop that exhibits the history dependent nature of magnetisation of ferromagnetic materials .. 5
1.6: Paramagnetism-antiferromagnetism transition .. 6
1.7: Illustration of Curie-Weiss law in (a) antiferromagnetic and (b) ferromagnetic materials .. 8
1.8: Curie temperatures .. 8
1.9: Antiferromagnetic superexchange .. 10
1.10: Ferromagnetic superexchange .. 10
1.11: Energy diagram exhibiting the relative positions of the ZFS, M_S levels of an S =10 system
(blue arrow indicates the energy barrier and the red arrows indicate the thermal pathway
to reorientate from –M_S to +M_S), and the barrier between the M_S +10 and -10 states) .. 12
1.12: Change in potential energy of an SMM as the magnetic field is changed from \(H = 0 \) to \(H = nD / g \mu_B \) .. 13
1.13: Structure of [Mn_{12}O_{12}(CH_3COO)_{16}(H_2O)_4] (I)
(codes for atoms: large grey; Mn, medium black; O, rest; C, and H atoms are omitted for clarity) .. 14
1.14: Hysteresis loop of magnetisation for Mn_{12}Ac .. 14
1.15: Schematic diagram of spin alignment of \(\mu_3 \)-oxo bridge
(Fe = light green; O = red) .. 15
1.16: Structural formulae of salicylaldoxime ligands discussed in the text........ 16
1.17: Metallic core of the complex \[\text{Fe}_{6}\text{O}_{2}\text{H(sao)}_{6}\text{(CH}_{3}\text{O})_{3}\text{(OH)}_{3}\text{]}^{3-} \text{(VI)}
(all the H-atoms are omitted for clarity except the proton between
the \[\text{Fe}_{3}\text{O}\text{]} triangles and the symmetry-independent part is labelled)..... 17
1.18: The molecular structure of the anion of \[\text{HEt}_{3}\text{N}\] \[\text{Fe}_{6}\text{O}_{2}\text{(Me-sao)}_{4}\text{(SO}_{4})_{2}\text{(OMe)}_{4}\text{(MeOH)}_{2}\text{]} \text{(VII)}....................... 17
1.19: Fe-O core of \[\text{HEt}_{3}\text{N}\] \[\text{Fe}_{6}\text{O}_{2}\text{(Me-sao)}_{4}\text{(SO}_{4})_{2}\text{(OMe)}_{4}\text{(MeOH)}_{2}\text{]} \text{(VII)}
………. 18
1.20: Fe-O core of \[\text{Fe}_{6}\text{O}_{2}\text{(R}_{1}\text{-sao)}_{6}\text{(tea)(teaH)}_{3}\text{(O}_{2}\text{CMe})_{3}\text{]}.x\text{MeOH} \text{(XI)}........... 19
1.21: The molecular structure of \[\text{Fe}_{6}\text{O}_{2}\text{(OMe)}_{4}\text{(Me-sao)}_{6}\text{Br}_{4}\text{(py)}_{4}\text{]} \text{(XII)}
(Fe-olive green, O-red, N-dark blue, C-gold, Br-light blue)................. 20
1.22: The molecular structure of \[\text{Fe}_{6}\text{O}_{2}\text{(OMe)}_{4}\text{Cl}_{2}\text{(O}_{2}\text{CPh-4-NO}_{2})_{4}\text{(Me-sao)}_{2}\text{Cl}_{2}\text{(py)}_{2}\text{]} \text{(XIV)}
(Fe-olive green, O-red, N-dark blue, C-gold, Cl-bright green)……
1.33: General structure of derivatised salicylaldoximes ... 31
1.34: General X-ray experimental set up .. 33
1.35: Superconducting detection coil .. 36
1.36: Typical output from the SQUID ... 37
1.37: Nuclear decay scheme of 57Co exhibiting the transition giving a
14.4 keV Mössbauer gamma ray .. 39
1.38: Energy level diagram showing the isomer shift (δ) and quadrupole splitting
(ΔE_Q) for the 3/2 to 1/2 transition in 57Fe .. 40
1.39: Energy level diagram illustrating magnetic splitting in 57Fe 40
2.1: General structure of salicylaldoxime .. 49
2.2: Coordination and bridging modes of salicylaldoximes ... 50
2.3: The most common building block for polynuclear complexes
of salicylaldoximes, the $[M_3O(\text{oximate})_3]^+$ moiety,
where $R_1 = H$, $R_2 = R_3 = \text{alkyl groups}$... 51
2.4: Examples for single-headed oximes utilised in this project 52
2.5: The common numbering for the aldehydes and the oximes,
$R_y = \text{rest of the ligand}$.. 53
2.6: The 1H NMR spectrum of L_1a .. 54
2.7: The 1H NMR spectrum of L_1 ... 54
2.8: The 13C NMR spectrum of L_1a .. 55
2.9: The 13C NMR spectrum of L_1 ... 56
2.10: The HMQC spectrum of L_1 .. 56
2.11: General structure of derivatised salicylaldoximes .. 57
2.12: General synthetic scheme of the salicylaldoxime ligands 58
2.13: (a) Crystal structure of $HL_2^+\cdot\text{NO}_3^-$ (b) H-bonds present
within the lattice (C-brown, N-blue, O-red, H-white,
H-bonds are illustrated in brown dotted lines);
ORTEP view at 30% probability level ... 62
2.14: Asymmetric components of the crystal structure $C_1\cdot4\text{MeOH},$
$[\text{FeB}(L_1-H)_2\text{F}(O)](\text{BF}_4)(\text{MeOH})_2$ (Fe-cyan, B-orange, N-blue,
O-red, F-green,C-brown H-white and all H-atoms are omitted
for clarity except the ones bound to tertiary nitrogen atoms);
ORTEP view at 50% probability level .. 65
2.15: Crystal structure of $[\text{Fe}_2\text{B}_2(L_1-H)_4\text{F}_2\text{(O)}_2]^2^+$ ion of the complex C_1
(Fe-cyan, F-green, B-orange, N-blue, O-red, C-brown, and H-white and all the H-atoms are omitted for clarity except the ones bound to tertiary nitrogen atoms); ORTEP view at 50% probability level……. 66

2.16: Metallic core of the structure (see the plane of Fe1-O13 -Fe1-O13a) of the complex C1; ORTEP view at 50% probability level………….. 66

2.17: Selected H-bond contacts drawn in brown dotted lines within the complex, [Fe2B2(L1-H)4F2(O)2]2+ (Fe-cyan, F-green, N-blue, O-red, C-brown, B-orange, H-white and all the non H-bonding H-atoms are omitted for clarity except the ones bound to tertiary nitrogen atoms); ORTEP view at 50% probability level………………. 67

2.18: (a) The core of the complex C1, (b) Compound (I), [Fe2(C30H29B2N6O6)Cl2(CH3O)]……………………………………………………………….. 69

2.19: (a) Linear tetranuclear complex containing a BIII-MnII-MnII-BIII unit, (b) 2-6-diformyl-4-methylphenol oxime (H3dfmp)…………………….. 70

2.20: Asymmetric components of the crystal structure of [Fe8O(OH)7 r(L1-H)5(L1-2H)]2+ (Fe-cyan, N-blue, O-red, C-brown, and all the H atoms are omitted for clarity except the ones bound to tertiary amine N-atoms); ORTEP view at 50% probability level ……………………………………………………………………………… 71

2.21: The crystal structure of the first independent complex [Fe8O(OH)7 r(L1-H)5(L1-2H)]2+ (Fe-cyan, N-blue, O-red, C-brown, and all the H atoms are omitted for clarity except the ones bound to tertiary amine N-atoms); ORTEP view at 15% probability level ……………………………………………………………………………….. 74

2.22: The metallic core of the crystal structure [Fe8O2(OH)6 r(L1-H)5(L1-2H)]2+ (Fe-cyan, N-blue, O-red); ORTEP view at 50% probability level…….. 75

2.23: The crystal structure of the second independent complex [Fe8O(OH)7 r(L1-H)5(L1-2H)]2+ (Fe-cyan, N-blue, O-red, C-brown, and all the H atoms are omitted for clarity except the ones bound to tertiary amine N-atoms); ORTEP view at 15% probability level ……………………………………………………………………………….. 75

2.24: The metallic core of the crystal structure of the second independent complex [Fe8O(OH)7 r(L1-H)5(L1-2H)]2+ (Fe-cyan, N-blue, O-red); ORTEP view at 50% probability level……………………………………… 76
2.25: Selected H-bond contacts within asymmetric unit of the complex, C2 drawn in brown dotted lines (Fe-cyan, N-blue, O-red, C-brown, all the H-atoms involved in forming H-bonds are illustrated in white); ORTEP view at 50% probability level .. 76

2.26: Asymmetric components of the crystal structure, C3 \{Na_{0.167}[Fe_{1.66}(OH)_{1.333}(L\textsubscript{11}-H)Py](BF\textsubscript{4})_{0.333}(H\textsubscript{2}O)Py_{0.500}\} (Fe-cyan, B-orange, N-blue, O-red, F-green, C-brown, Na-yellow, and all the H atoms are omitted for clarity except the ones bound to the tertiary amine nitrogen atoms of the ligand); ORTEP view at 50% probability level .. 80

2.27: Parallel view of Na[Fe\textsubscript{7}(OH)\textsubscript{8}(L\textsubscript{11}-2H)\textsubscript{6}Py\textsubscript{6}]2+ (C3) (Fe-cyan, N-blue, O-red, C-brown, and all the H atoms (white) are omitted for clarity. All the atoms involved in forming hydrogen bonding are labelled); ORTEP view at 25% probability level ... 81

2.28: Magnetic core of Na[Fe\textsubscript{7}(OH)\textsubscript{8}(L\textsubscript{11}-2H)\textsubscript{6}Py\textsubscript{6}]2+ (C3) (Fe-cyan, N-blue, O-red); ORTEP view at 50% probability level 83

2.29: Plot of $\chi_M T$ vs T for the complex C1 .. 87

2.30: Plot of $\chi_M T$ vs T for the complex C1 with fitted data with 15% impurity removed from the raw data (fitted data best drawn as a line in red colour) .. 88

2.31: M vs. H/T plot for C1 .. 89

2.32: Plot of $\chi_M T$ vs T for the complex C2 90

2.33: M vs. H/T plot for C2 .. 90

2.34: Plot of $\chi_M T$ vs T for the complex C3 91

2.35: M vs. H/T plot for C3 .. 92

2.36: 57Fe Mössbauer spectra of the complex C1 (raw data with error bar lines – spikey lines, simulated – continuous lines) at high and low temperature ... 94

2.37: 57Fe Mössbauer spectra of the complex C2 [raw data with error bar lines – spikey lines, simulated – continuous lines (red and blue lines - different species, black line – the overall fit] at high and low temperature ... 96

2.38: 57Fe Mössbauer spectra of the complex C3 [raw data with error bar lines
spikey lines, simulated – continuous lines (red and blue lines
- different species, black line – the overall fit] at high and low
temperature... 96
2.39: The relationship between the isomer shift and quadrupole splitting
of the iron compounds (figure adapted from a presentation titled
'57Fe Mössbauer Spectroscopy: a Tool for the Remote
Characterisation of Phyllosilicates' by Enver Murad.)...96
3.1: (a) Double-headed oxime, where \(R_1 = -\text{t-}Bu, -\text{CH}_3, R_2 = \) linkers
(see Figure 3.2), and \(R_3 = -\text{CH}_3, -\text{CH}_2-\text{Ar} \) (see Figure 3.2).
(b) The planar \([\text{M}_3\text{O}((\text{oximate})_3)]^+\) with 3-fold symmetry,
where \(X = \) rest of the ligand.. 102
3.2: The \(R_2 \) linkers used in this chapter with \(R_3 \) modes \((R_3 = -\text{CH}_3, -\text{CH}_2-\text{Ar}) \)
shown.. 103
3.3: Crystal structure of the cation \([\text{Cu}_3(\text{L}_5-\text{H})_3(\text{Py}_3)]^{3+}\) (Cu-dark green,
N-blue, O-red, C-brown, and H atoms except H-atoms on the
straps are omitted for clarity); ORTEP view at 50% probability level.... 104
3.4: Selected H-bond contacts drawn in brown dotted lines (Cu-dark green,
N-blue, O-red, C-brown, H-white, and all the H-atoms are omitted
for clarity except the ones involved in forming H-bonds and the
ones on amine N-atoms); ORTEP view at 30%
probability level .. 107
3.5: Cation, \([\text{Cu}_4(\text{L}_8-3\text{H})_2\text{Py}_2]^{2+}\) of the complex \([\text{Cu}_4(\text{L}_8-3\text{H})_2\text{Py}_2](\text{BF}_4)_2
(\text{MeOH})\text{Py} (\text{C}_7\text{-MeOH}\text{-Py}) \) [Cu-green, N-blue, O-red, C-brown,
(C-atoms of the pyridine molecules are omitted for clarity) and
H atoms are omitted for clarity except the oximic H-atoms];
ORTEP view at 50% probability level.. 109
3.6: Crystal structure of the cation \([\text{Fe}_3\text{BO}_2(\text{L}_9-2\text{H})_2(\text{OH})_2(\text{Py})_2]^{2+}\)
of the complex \textbf{C10} (Fe-cyan, B-orange, N-blue, O-red, C-brown)
H atoms are omitted for clarity except the protons on the tertiary
amines, counterions and solvent molecules have also been removed
for clarity; ORTEP view at 50% probability level.......................... 113
3.7: Metallic core of the structure \textbf{C10}
(see the plane of Fe1- O5 - B1- O5a- Fe1); ORTEP view at 50% probability level ... 115

3.8: Hydrogen bonding present within the complex **C10**; ORTEP view at 50% probability level ... 116

3.9: Plot of $\chi_M T$ vs T for the complex **C10** with fitted data (fitted data illustrated in red colour) ... 117

3.10: Schematic J model for the complex **C10** ... 118

3.11: Plot of energy vs total spin of the complex **C10** ... 118

3.12: M vs. H/T plot for **C10** ... 119

3.13: Crystal structure of the cation of the complex **C8**

\[
\text{[Fe}_6\text{O(OH)}_7(\text{L7-2H})_3]^{3+} \quad (\text{Fe-cyan, N-blue, O-red, C-brown}).
\]

The H atoms are omitted for clarity except the ones bound to tertiary nitrogen atoms; ORTEP view at 50% probability level ... 121

3.14: Metallic core of [Fe6O(OH)7(L5-2H)3]3+ of the complex **C5**

emphasising the hydrogen bond contact (dark green dotted line) between the central oxygen atoms (O10 & O11) of the lower and upper triangles and the internal hexagon (O15 through O20, shown in dotted light green line) (Fe-cyan, N-blue, O-red); ORTEP view at 50% probability level........... 123

3.15: Plot of $\chi_M T$ product vs T for the complex **C8-7H2O-Py** with fitted data (fitted data illustrated in red colour) ... 124

3.16: Plot of energy vs total spin for the complex **C8-7H2O-Py** ... 125

3.17: Schematic J model for the complex **C8-7H2O-Py** ... 126

3.18: Crystal structure of the cation of the complex, **C4**

\[
\text{[Fe}_7\text{O}_2\text{O(OH)}_6(\text{L5-2H})_3]^{5+} \quad (\text{Fe-cyan, N-blue, O-red, C-brown, all the H atoms except the ones bound to tertiary nitrogen atoms and all the axial pyridine molecules are omitted for clarity}); ORTEP view at 50% probability level ... 127
\]

3.19: Partial structure of the complex **C4** that emphasises the displacement of the central oxygen atom O7 by 0.335(5) Å and the coordination by the pyridines (Ry = the rest of the ligand that connects to the second triangular unit, Fe-cyan, N-blue,

XVII
O-red, C-brown, all the H are omitted for clarity);
ORTEP view at 25% probability level

3.20: Selected H-bond contacts within the complex C4 drawn in brown
dotted lines, Fe-cyan, N-blue, O-red, C-brown, all the H atoms
except the ones bound to tertiary nitrogen atoms and the
ones involved in forming H bonds and the axial pyridine
molecules are omitted for clarity; ORTEP view at 10% probability
level

3.21: Plot of $\chi_M T$ product vs T for the complex C4

3.22: M vs. H/T plot for C4

3.23: The metallic core of the complex C6 (Fe-cyan, N-blue,
O-red); ORTEP view at 10% probability level

3.24: Plot of $\chi_M T$ product vs T for the complex C6 \cdot 7BF$_4$$^-$ \cdot 6H$_2$O

3.25: M vs. H/T plot for C6 \cdot 7BF$_4$$^-$ \cdot 6H$_2$O

3.26: Selected H-bond contacts within the complex, C9 drawn in
brown dotted lines, Fe-cyan, N-blue, O-red, C-brown.
H atoms except the ones involved in forming H-bonds
are omitted for clarity; ORTEP view at 50% probability
level

3.27: Plot of $\chi_M T$ product vs T for the complex C9 \cdot 3BF$_4$$^-$ \cdot 2PF$_6$$^-$ \cdot 3H$_2$O

3.28: M vs. H/T plot for C9 \cdot 3BF$_4$$^-$ \cdot 2PF$_6$$^-$ \cdot 3H$_2$O

3.29: 57Fe Mössbauer spectra of the complex C8 (raw data with error bar lines
– spikey lines, simulated – continuous lines)
at high and low temperature

3.30: 57Fe Mössbauer spectra of the complex C10 (raw data with error bar lines
– spikey lines, simulated – continuous lines)
at high and low temperature

3.31: 57Fe Mössbauer spectra of the complex C4 [raw data with error bar lines
– spikey lines, simulated – continuous lines (red and blue lines
- different species, black line – the overall fit]
at high and low temperature

3.32: 57Fe Mössbauer spectra of the complex C9 [raw data with error bar lines
– spikey lines, simulated – continuous lines (red and blue lines
- different species, black line – the overall fit]
3.33: 57Fe Mössbauer spectra of the complex C6 [raw data with error bar lines
– spikey lines, simulated – continuous lines (red and blue lines
- different species, black line – the overall fit]

at high and low temperature... 151

4.1: Structural representation of the dimetallic core of the complex C1;
ORTEP view at 50% probability level.. 157

4.2: Metallic core of the structure C10; ORTEP view
at 50% probability level... 157

4.3: Metallic core, [Fe$_6$O(OH)$_7$(\mathbf{L}_5-2H)$_3$]$^{3+}$ of the complex, C8 emphasising the hydrogen bond contact (dark green dotted line)
between the central oxygen atoms (O10 and O11) of the lower
and upper triangles and the internal hexagon
(O15 through O20, shown in dotted light green line)
(Fe-cyan, N-blue, O-red); ORTEP view at 50% probability level.... 159

4.4: The metallic cores of the two crystallographic independent
molecules of [Fe$_6$O(OH)$_7$(\mathbf{L}_1-H)$_5$(\mathbf{L}_1-2H)]$^{2+}$ C2
(Fe-cyan, N-blue, O-red); ORTEP view at 50% probability level.... 160

4.5: Metallic core, [Fe$_7$O$_2$(OH)$_6$(\mathbf{L}_5-2H)$_3$]$^{5+}$ of the complex, C4
emphasising anti-prismatic arrangement of the N-O bridging
oximic bonds (Fe-cyan, N-blue, O-red); ORTEP view
at 30% probability level.. 161

4.6: A representative simple salicylaldoxime where X is a more bulky group... 164
LIST OF TABLES

1.1: Derivatised salicylaldoximes utilised in the project..32
1.2: Derivatised ‘single-headed’ salicylaldoximes utilised in the project........58
2.2: Metal salts utilised in the project...59
2.3: H-bond lengths for L2...61
2.4: Selected bond lengths of the complex C1-4MeOH.......................................64
2.5: Distorted tetrahedral angles of a boron atom and Fe(III) atom
of the complex C1-4MeOH ..65
2.6: Selected H-bond lengths of the complex C1-4MeOH.................................67
2.7: Charge balance analysis of the complex C1..68
2.8: Bond lengths around the Fe(III) atoms of the complex C2....................72
2.9: Bond angles around Fe(III) atoms of the complex C2..........................73
2.10: Selected H-bond distances of the asymmetric unit of the complex C2....74
2.11: Torsion angles around Fe(III) atoms of the complex C2......................77
2.12: Charge balance analysis of the complex C2..78
2.13: Fe/R-sao²⁻ complexes with the [Fe₃(µ₂-O)]⁷⁺ core..................................78
2.14: Distorted octahedral bond lengths around the Fe2(III) atom...............79
2.15: Distorted octahedral angles of Fe2(III) atoms on the plane
For complex C3...79
2.16: Selected H-bond lengths of the complex C3..82
2.17: Charge balance analysis of the complex C3..82
2.18: Crystallographic details of the complexes, C1-C3 and L2.................85
2.19: Fitting parameters of ⁵⁷Fe on C1-C3 at low temperature
and higher temperature (δ = isomer shift, ΔE₀ = electric
quadrupole splitting, Γ₁ = line width of the left peak,
Γ₂ = line width of the right peak, I = intensity)..93
3.1: Selected bond distances for complex C5-3H₂O-3MeOH..........................106
3.2: Selected bond angles for complex C5-3H₂O-3MeOH................................106
3.3: Selected H-bond distances for complex C5-3H₂O-3MeOH....................106
3.4: Charge balance analysis of the complex C5...107
3.5: Selected bond lengths around Cu ions of complex C7·MeOH-Py.........110
3.6: Selected bond angles around the Cu(II) ions of complex C7·MeOH-Py....110
3.7: Selected H-bond distances for \textbf{C7-MeOH-Py}…………………………………….110
3.8: Charge balance analysis of the complex \textbf{C7}……………………………………111
3.9: Crystallographic details of the complexes \textbf{C5} and \textbf{C7}………………….111
3.10: Selected bond lengths around the metal ions for
the complex \textbf{C10}-2H\textsubscript{2}O-MeOH-Py…………………………………….114
3.11: Selected bond angles for the complex \textbf{C10}-2H\textsubscript{2}O-MeOH-Py ………….114
3.12: Selected H-bonds for the complex \textbf{C10}-2H\textsubscript{2}O-MeOH-Py ………………..116
3.13: Charge balance analysis of the complex \textbf{C10}……………………………………….116
3.14: Selected bond lengths around metal ions of the complex
\textbf{C8-7H\textsubscript{2}O-Py}……………………………………………………………….122
3.15: Selected bond angles around the metal centres of
the complex, \textbf{C8-7H\textsubscript{2}O-Py}…………………………………………………………122
3.16: Selected H-bond lengths of the complex \textbf{C8-7H\textsubscript{2}O-Py}………………….122
3.17: Charge balance analysis of the complex \textbf{C8}………………………………………..123
3.18: Selected bond lengths around the metal centres of the
complex \textbf{C4-7H\textsubscript{2}O-3Py}……………………………………………………………128
3.19: Selected bond angles around the metal centres of the
complex \textbf{C4-7H\textsubscript{2}O-3Py}……………………………………………………………128
3.20: Important H-bond distances and angles within
the complex \textbf{C4-7H\textsubscript{2}O-3Py}…………………………………………………………130
3.21: Charge balance analysis of the complex \textbf{C4}………………………………………..131
3.22: Selected bond lengths around the metal centres of the
complex \textbf{C6-5PF\textsubscript{6}-2H\textsubscript{2}O} ……………………………………………………134
3.23: Selected bond angles around the metal centres of the
complex \textbf{C6-5PF\textsubscript{6}-2H\textsubscript{2}O}……………………………………………………135
3.24: Selected torsion angles of the complex \textbf{C6-5PF\textsubscript{6}-2H\textsubscript{2}O}……………..135
3.25: CHN results for the complex \textbf{C6-5PF\textsubscript{6}}……………………………………136
3.26: Charge balance analysis of the complex \textbf{C6-5PF\textsubscript{6}}………………………….136
3.27: Selected bond lengths around the metal centres of the
complex \textbf{C9-3BF\textsubscript{4}-3H\textsubscript{2}O-2Py}………………………………………………139
3.28: Selected bond angles around the metal centres of the
complex \textbf{C9-3BF\textsubscript{4}-3H\textsubscript{2}O-2Py}………………………………………………139
3.29: Important H-bond distances and angles within
the complex \textbf{C9-3BF\textsubscript{4}-3H\textsubscript{2}O-2Py}………………………………………………140
3.30: Charge balance analysis of the complex C9·7BF₄ 140
3.31: CHN results for the complex C9·3BF₄·2PF₆·3H₂O 141
3.32: Iron clusters of double-headed salicylaldoxime derivatives 145
3.33: Crystallographic details of the complexes, C10, C8, C4, C6
 and C9 .. 146
3.34: Fitting parameters of ⁵⁷Fe on C8, C4, C9, C10 and C6 at low
 temperature and higher temperature (δ = isomer shift,
 ΔE_Q = electric quadrupole splitting, Γ_L = line width
 of the left peak, Γ_R = line width of
 the right peak, I = intensity) .. 148
4.1: Crystallographical formulae of the complexes ... 155
4.2: Complexes with low nuclearity ... 156
4.3: Complexes with high nuclearity ... 158
4.4: Comparison of IR data, Fe³⁺μ-oxo/hydroxo bond lengths and
 displacements of the central oxygen atoms from the metal planes
 with each other and literature .. 162
ABBREVIATIONS

AF Antiferromagnetic exchange
SMMs Single molecule magnets
SCMs Single chain magnets
ZFS Zero field splitting parameter (D)
M Magnetisation
H External magnetic field
χ Magnetic susceptibility
Tc Curie temperature
T_N Néel temperature
VT Variable temperature
QTM Quantum tunnelling of magnetisation
QPI Quantum phase interference
MeOH Methanol
EtOH Ethanol
MeCN Acetonitrile
EtOAc Ethyl acetate
DMF Dimethylformamide
DMSO Dimethyl sulfoxide
Et$_2$O Diethylether
Et$_3$N Triethylamine
Py Pyridine
CDCl$_3$ Deuterated chloroform
T Temperature
RT Room temperature
MP Melting point
dc Direct current
br Broad
m Medium
s Strong
saoH$_2$ Salicylaldoxime
Me-saoH$_2$ Methyl salicylaldoxime
Et-saoH$_2$ Ethyl salicylaldoxime
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph-saoH₂</td>
<td>Phenyl salicylaldoxime</td>
</tr>
<tr>
<td>MRI</td>
<td>Magnetic resonance imaging</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray diffraction</td>
</tr>
<tr>
<td>SQUID</td>
<td>Superconducting quantum interference device</td>
</tr>
<tr>
<td>TLC</td>
<td>Thin layer chromatography</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear magnetic resonance</td>
</tr>
<tr>
<td>ESI-MS</td>
<td>Electrospray ionisation mass spectrometry</td>
</tr>
<tr>
<td>IR</td>
<td>Infra-red</td>
</tr>
<tr>
<td>UV-Vis</td>
<td>Ultraviolet-visible</td>
</tr>
<tr>
<td>TMS</td>
<td>Trimethylsilane</td>
</tr>
</tbody>
</table>