REMOVAL OF COPPER, CHROMIUM AND ARSENIC FROM THE TANNERY AND TIMBER TREATMENT EFFLUENTS AND REMEDIATION OF CHROMIUM CONTAMINATED SOIL

A thesis presented in partial fulfillment of the requirements for the degree of Master of Applied Science at Massey University

SUBRAMANI THIAGARAJAN
MAY 1997
Dedicated to

My Beloved Parents
ABSTRACT

Tannery and timber treatment effluents are considered to be the major source of Copper (Cu), Chromium (Cr) and Arsenic (As) heavy metal contamination into the environment. Chromium is used in tanneries for the treatment of hides and skins whereas, copper, chromium, and arsenic (CCA) solution is used as the timber treatment chemical. Chromium is used as Cr (III) in tannery industry and as Cr (VI) in timber treatment industry. Arsenic and Cr (VI) which are present in the timber treatment effluent are highly toxic and carcinogenic.

An initial survey has indicated that some tannery industries in New Zealand have not developed pre-treatment practices to reduce the heavy metal concentration before discharging the effluent into soil or waterways. The heavy metal pollution due to timber treatment industries may occur from the drips, leaks and spills due to poor handling of CCA solution while treating timber.

In this project, the potential value of industrial waste materials, such as *Pinus radiata* bark, fluidised bed boiler ash (FBA), flue gas desulphurisation gypsum (FGDG) and natural resources, such as zeolite, peat soil, and two soils (Tokomaru and Egmont soils) to reduce heavy metal concentration in tannery and timber treatment effluents was examined. The value of these materials in the remediation of soil contaminated with Cr was examined using a growth experiment.

The effect of pre-treatment of *Pinus* bark with acid, alkali of formaldehyde/acid on the retention of Cr was examined. Pre-treatment of *Pinus* bark increased the heavy metal retention only at low heavy metal concentration and did not significantly improve the heavy metal retention at high concentration. The extent of adsorption increased with an increase in surface area of *Pinus* bark material. Speciation of Cr indicated that Cr (VI) is reduced to Cr (III) and adsorbed onto the *Pinus* bark.

FBA was found to be most efficient in reducing the Cr (III) concentration from tannery effluent and As and Cu concentrations in the timber treatment effluent. In the
case of Cr (VI), the highest retention was shown by the *Pinus* bark and the peat soil. The increased retention of Cr (III), Cu and As by FBA was due to the precipitation of Cr (III) as chromium hydroxide, Cu as cupric hydroxide and As as calcium arsenate. A combination of FBA + *Pinus* bark or FBA + peat soil was efficient in reducing all the three heavy metal (Cu, Cr (VI) and As) concentration from the timber treatment effluent. The effluents contaminated with Cu, Cr and As can be passed through a column containing FBA and *Pinus* bark or peat soil.

A growth experiment using sun flower (*Helianthus annus*) was set-up to examine the effectiveness of FBA, lime and *Pinus* bark to immobilise Cr in contaminated soil. FBA and lime amended soils were effective in establishing a normal plant growth of sun flower in Cr (III) contaminated soil even at high Cr (III) levels (3200 mg/kg soil). Incorporation of lime or FBA in Cr (III) contaminated soils causes precipitation of Cr (III) and thereby reduces the bioavailability of Cr for plants uptake. Only *Pinus* bark amended soil was found to be effective in remediating Cr (VI) contaminated soil even at 3200 mg/kg soil. *Pinus* bark material effectively retained the Cr (VI) present in the soil solution and thus reducing the toxicity and bioavailability of Cr (VI) to plants.
ACKNOWLEDGEMENT

I wish to express my sincere thanks, heartfelt gratitude and appreciation to the following people for their contribution towards the completion of this thesis.

My supervisor Dr. N.S.Bolan, for his valuable guidance, encouragement, help, patience, tolerance and friendship during my studies. I also wish to thank him for supporting my application for NZODA scholarship which has enlightened my career.

Prof. Russ Tillman, for his valuable guidance and suggestions during my studies and conference presentations. Drs. Mike Hedley and Loganathan for their valuable advise and support during various other research projects.

Dr. Ravi Naidu, Senior Principal Research Scientist, CSIRO Division of Land and Water, Adelaide, for his helpful advise in various aspects of chromium pollution due to tannery industry.

Mr. Lance Currie, Mr. Bob Toes, Mr. Ian Furtkert, Mr. Mike Bretherton, Mrs. Ann West and Mr. Brett Robinson for their assistant in the laboratory experiments. Mrs. Denise, Ms. Marian and all my fellow postgraduates for their help and friendship. Mr. Malcolm Boag for his proof reading.

Drs. Peter O’ Donnell and Das Gupta from New Zealand Leather and Shoe Research Association for their advise and guidance.

The Ministry of Foreign Affairs and Trade for granting me NZODA scholarship to pursue my Masters degree at Massey University. International Student Office, particularly Mr. Charles Chau, Mrs. Magrate Smille, and Mrs. Diane Reilly for their advise, friendship and support.
Mr. Kevin Harris from the Agricultural and Horticulture Multimedia Unit, for the use of his computing resources and helping me to have my personal homepage in the World Wide Web.

Dr. Mahaimaraja from Tamil Nadu Agricultural University, India for encouraging and guiding me to New Zealand, which had made my dream come true.

Mr. and Mrs. Rajarathanam, and Dr. Marimuthu from India for their encouragement and guidance during my studies.

Dr. Leela Bolan for her encouragement, love and friendship during my stay in New Zealand.

Finally, but most importantly to my beloved parents Mr. D.K. Thiagarajan and Mrs. Ramani Thiagarajan, who melted like a candle to lighten me during their whole career. I would like to express my most heartfelt gratitude for their love, never-ending tolerance, encouragement, continual support, prayers and offering me education with many sacrifices and difficulties.
TABLE OF CONTENTS

ABSTRACT ... i
ACKNOWLEDGEMENT iii
TABLE OF CONTENTS v
LIST OF TABLES xiv
LIST OF FIGURES xv
LIST OF PLATES xvii

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND 1
1.2 OBJECTIVES 2
1.3 STRUCTURE OF THE STUDY 3

CHAPTER 2

LITERATURE REVIEW

2.1 INTRODUCTION 4
2.2. TANNERY AND TIMBER TREATMENT PROCESSES 5
2.2.1 Tannery treatment processes
 2.2.1.1 Vegetable tanning
 2.2.1.2 Chrome tanning
 2.2.1.3 Mixed Chromium-Vegetable tanning
 2.2.1.4 Aluminium tanning
 2.2.1.5 Zirconium tanning

2.2.2 Timber treatment process
 2.2.2.1 CCA treatment

2.3 COMPARISON OF CHROMIUM FIXATION ONTO HIDE AND TIMBER

2.3.1 Chromium fixation onto hide
2.3.2 Chromium fixation onto timber

2.4 THRESHOLD LEVELS OF HEAVY METAL ON SOILS
2.4.1 Contamination due to tannery and timber treatment sites in New Zealand

2.5 REMOVAL OF THE HEAVY METALS FROM INDUSTRIAL EFFLUENTS

2.5.1 Chromium (III)
 2.5.1.1 Precipitation
 2.5.1.2 Other processes

2.5.2 Chromium (VI)
 2.5.2.1 Reduction and precipitation
 2.5.2.2 Other processes
2.5.3 Copper
 2.5.3.1 Precipitation 19
 2.5.3.2 Other processes 19
2.5.4 Arsenic
 2.5.4.1 Precipitation 20
 2.5.4.2 Other processes 20

2.6 REACTIONS OF COPPER, CHROMIUM AND ARSENIC
IN THE SOILS
 2.6.1 Copper 21
 2.6.2 Chromium 22
 2.6.3 Arsenic 23

2.7 REMEDIATION OF HEAVY METAL CONTAMINATED
SOIL
 2.7.1 Onsite treatment of heavy metal contaminated soil 25
 2.7.1.1 Physical in-situ treatment 25
 2.7.1.2 Chemical in-situ treatment 26
 2.7.1.3 Biological in-situ treatment 27
 2.7.2 Offsite treatment 28
 2.7.3 Removal of contaminated soil 28
 2.7.4 Other soil remedial treatment 29

2.8 SUMMARY 30
CHAPTER 3
CASE STUDIES OF THE TANNING AND TIMBER TREATMENT INDUSTRIES IN NEW ZEALAND

3.1 INTRODUCTION

3.2 THE TANNING INDUSTRY

3.2.1 Visit to a Tannery industry in North Island

3.2.1.1 Problem of the site

3.2.1.2 Effluent and soil collection

3.2.1.3 Effluent and soil analysis

3.2.1.4 Results and discussion

A. Effluent analysis

B. Soil samples

3.2.1.5 Recommendations

A. Pre-treatment of effluent using “FBA-Bark Filter System”

B. Precipitation tank

C. Immobilisation of Cr in the polluted soil

3.2.2 Visit to a Tannery in Wanganui

3.2.2.1 Recommendations

3.3 THE TIMBER TREATMENT INDUSTRY

3.3.1 Visit to a timber treatment plant, Tangimona

3.3.2 Visit to Carter Holt Harvey Timber treatment plant, Marton

3.4 CONCLUSIONS
CHAPTER 4
REDUCTION OF COPPER, CHROMIUM AND ARSENIC FROM TANNERY AND TIMBER TREATMENT EFFLUENTS

4.1 INTRODUCTION

4.2 MATERIALS USED

4.2.1 Industrial wastes

4.2.1.1 *Pinus* bark

4.2.1.2 Fluidised bed boiler ash

4.2.1.3 Flue gas desulphurisation gypsum

4.2.2 Natural resources

4.2.2.1 Zeolite

4.2.2.2 Peat soil

4.2.2.3 Tokomaru and Egmont soil

4.2.3 Combination of materials

4.2.4 Chemicals used

4.3 METHODS USED

4.3.1 Measurement of Cu, Cr and As

4.3.2 X-ray diffraction study

4.3.3 Retention of Cr by *Pinus* bark

4.3.3.1 Surface area measurement

4.3.3.2 Pre-treatment of *Pinus* bark

A. Acid treatment

B. Alkali treatment

C. Formaldehyde/Acid treatment
4.3.3.3 Batch adsorption at low and high concentration of Cr
4.3.3.4 Speciation of Cr adsorbed by the bark
4.3.4 Batch adsorption for Cu, Cr and As
4.3.5 Adsorption isotherms for Cu, Cr and As
4.3.6 Leaching experiment for Cu, Cr and As

4.4 RESULTS AND DISCUSSION

4.4.1 Retention of Cr by Pinus bark
4.4.1.1 Effect of surface area of bark on Cr adsorption
4.4.1.2 Effect of Pre-treatment of bark on Cr adsorption
4.4.1.3 Speciation of Cr adsorbed by the bark

4.4.2 Batch adsorption of Cu, Cr and As
4.4.2.1 Tannery effluent
4.4.2.2 Timber treatment effluent
4.4.2.3 Mechanism of heavy metal reduction in the effluents
 A. Precipitation by FBA
 B. Pinus bark retention
 C. Peat soil retention

4.4.3 Combination of materials - Batch adsorption
4.4.4 Adsorption isotherms for Cu, Cr and As
4.4.4.1 Chromium (III)
4.4.4.2 Copper 72
4.4.4.3 Chromium (VI) 72
4.4.4.4 Arsenic 76
4.4.5 Leaching experiment for Cu, Cr and As 76
 4.4.5.1 Tannery effluent 76
 4.4.5.2 Timber treatment effluent 78

4.5 CONCLUSIONS 80
 4.5.1 Tannery effluent 80
 4.5.2 Timber treatment effluent 81
 4.5.3 Disposal of the heavy metal retained materials 81

CHAPTER 5
IMMOBILISATION OF CHROMIUM IN CONTAMINATED SOIL

5.1 INTRODUCTION 82
5.2 MATERIALS AND METHODS 83
 5.2.1 Soil Cr levels 84
 5.2.2 Soil amendments 84
 5.2.3 Plant used 84
 5.2.4 Pot experiment 85
 5.2.5 Plant analysis 85
 5.2.6 Soil analysis 86
 5.2.6.1 Soil pH 86
 5.2.6.2 Soil Cr sequential extraction 86
A. Water soluble Cr and Cr (VI) in soil 87
B. Exchangeable Cr 87
C. Organic bound Cr 88
D. Fe/Mn oxide bound Cr 88
E. Residual Cr 88

5.3 RESULTS AND DISCUSSION 89

5.3.1 Plant growth 89

5.3.1.1 Effect of soil Cr on germination 91
A. Soil Cr (III) 91
B. Soil Cr (VI) 91

5.3.1.2 Effect of soil Cr on dry matter production 91
A. Soil Cr (III) 93
B. Soil Cr (VI) 93

5.3.1.3 Effect of soil Cr on leaf area 93
A. Soil Cr (III) 93
B. Soil Cr (VI) 95

5.3.2 Plant analysis 95

5.3.3 Soil analysis 98

5.3.3.1 Effect of soil Cr on pH of the soil 98
A. Soil Cr (III) 98
B. Soil Cr (VI) 100

5.3.3.2 Soil Cr sequential extraction 100
A. Soil Cr (III) 101
B. Soil Cr (VI) 104

5.4 CONCLUSION 109

CHAPTER 6
CONCLUSIONS AND RECOMMENDATIONS

6.1 LITERATURE REVIEW 110
6.2 CASE STUDIES 111
6.3 REDUCTION OF HEAVY METAL CONCENTRATION FROM THE TANNERY AND TIMBER TREATMENT EFFLUENTS 111
6.4 IMMOBILISATION OF CHROMIUM IN CONTAMINATED SOIL 113
6.5 RECOMMENDATIONS FOR FUTURE WORK 114
Table 2.1	Threshold levels of As, Cr(III), Cr (VI) and Cu on soils in some developed countries.	13
Table 2.2	Concentration of Cu, Cr & As at CCA contaminated sites in New Zealand.	15
Table 2.3	Preferred options for remediating a contaminated.	25
Table 2.4	Offsite soil treatment options.	28
Table 2.5	Treatment technologies available for soils contaminated with inorganic compounds.	29
Table 3.1	pH, EC and Na and Cr concentration of the tannery effluent.	36
Table 3.2	pH, EC and Na and Cr concentration of the soil samples.	36
Table 4.1	Characteristics of natural resources used.	49
Table 4.2	Retention of Cr (III) and Cr (VI) by untreated *Pinus* bark and pre-treated *Pinus* bark at low concentration (30 mg Cr/L).	60
Table 4.3	Retention of Cr (III) and Cr (VI) by untreated *Pinus* bark and alkali treated bark at high concentration (3200 mg Cr (III)/L and 1100 mg Cr(VI)/L).	61
Table 4.4	Speciation of Cr solution using activated aluminium oxide.	62
Table 4.5	Speciation of Cr (VI) solution which was treated with *Pinus* bark.	63
Table 4.6	Freundlich equation describing the adsorption data for Cr (III), Cr (VI), Cu and As.	73
Table 5.1	Sequential extraction of soil Cr (III).	102
Table 5.2	Concentration of Cr (VI) in the water soluble fractions.	104
Table 5.3	Sequential extraction of in the Cr (VI) contaminated soil.	105
LIST OF FIGURES

Figure 2.1 Chemical bonding between Cr salt and hide protein. 12
Figure 2.2 Simplified processes of Cr fixation onto hide and timber. 13
Figure 2.3 Chrome recycling drum system. 16
Figure 2.4 Chemical transformation of As in soils. 24
Figure 3.1 Current treatment of the tannery effluent before discharging into the soil. 33
Figure 3.2 The CCA timber treatment process using vacuum. and stream drying after timber treatment. 44
Figure 4.1 Adsorption of Cr (VI) as measured by K-value for different size fractions of Pinus bark. 59
Figure 4.2 Batch adsorption using various materials for Cr (III) in the tannery effluent. 64
Figure 4.3 Batch adsorption for various materials for Cu (II) in the timber treatment effluent. 64
Figure 4.4 Batch adsorption for various materials for Cr (VI) in the timber treatment effluent. 65
Figure 4.5 Batch adsorption for various materials for As (V) in the timber treatment effluent. 65
Figure 4.6 Cumulative adsorption by various materials for timber treatment effluent. 67
Figure 4.7 XRD pattern showing the peaks for gypsum -G- (CaSO₄·2H₂O) and sodium chloride (NaCl). 69
Figure 4.8 Batch adsorption using combination of effective materials for tannery effluent. 71
Figure 4.9 Combination batch adsorption using various materials for timber treatment effluent. 71
Figure 4.10 Adsorption isotherm of various effective materials for Cr (III). 74
Figure 4.11 Adsorption isotherm of various effective materials for Cu (II). 74
Figure 4.12 Adsorption isotherm of various effective materials for Cr (VI). 75
Figure 4.13 Adsorption isotherm of various effective materials for As (V). 75
Figure 4.14 Breakthrough curves for Cr (III) in the tannery effluent. 77
Figure 4.15 Breakthrough curves for Cu (II) in the timber treatment effluent. 77
Figure 4.16 Breakthrough curve for Cr (VI) in the timber treatment effluent. 79
Figure 4.17 Breakthrough curve for As (V) in the timber treatment effluent. 79
Figure 5.1 Effect of soil Cr on the dry matter production. 92
Figure 5.2 Effect of soil Cr on leaf area. 94
Figure 5.3 Plant uptake of Cr grown on unamended and FBA, lime and Pinus bark amended soils. 96
Figure 5.4 Relationship between plant Cr levels and dry matter production at varying levels of soil Cr grown on unamended and FBA, lime and bark amended soils (Except for the bark amended soil, there was no growth above the soil Cr(VI) level of 300 mg/kg in all the soils). 97
Figure 5.5 Effect of soil Cr addition on pH as measured in deionised water (----) and KCl (___) for the various soil amendments. 99
Figure 5.6 Comparison of sequential extraction of soil Cr at low (300 mg/kg) and high soil Cr (3200 mg/kg) levels in the Cr (III) contaminated soil. 103
Figure 5.7 Comparison of sequential extraction of soil Cr at low (300 mg/kg) and high soil Cr (3200 mg/kg) levels in the Cr (VI) contaminated soil. 107
LIST OF PLATES

<table>
<thead>
<tr>
<th>Plate</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Chromium precipitation tank, used to recycle Cr into the tannery at J.D.Wallace tannery, Waitoa.</td>
</tr>
<tr>
<td>3.2</td>
<td>Discharge of untreated tannery effluent with high Cr concentration (3200 mg/L) into a public sewage system, from a tannery in Wanganui.</td>
</tr>
<tr>
<td>3.3</td>
<td>Groundwater sampling in a timber treatment plant, Tangimona.</td>
</tr>
<tr>
<td>3.4</td>
<td>CCA treatment chamber with steam drying facility for drying the freshly treated timber.</td>
</tr>
<tr>
<td>3.5</td>
<td>Freshly treated timber at the Carter Holt Harvey timber treatment plant, Marton (after steam drying).</td>
</tr>
<tr>
<td>3.6</td>
<td>CCA drips from freshly treated timber in a timber treatment plant (without steam drying).</td>
</tr>
<tr>
<td>5.1</td>
<td>Difference in the plant growth between Cr (III) and Cr (VI) contaminated soil.</td>
</tr>
<tr>
<td>5.2</td>
<td>Effect of FBA, lime and Pinus bark amended soil in remediating soils contaminated with low (300 mg/kg) and high (3200 mg/kg) Cr levels.</td>
</tr>
</tbody>
</table>