Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
USING SUBSTRATE ANALOGUES TO PROBE THE MECHANISMS OF TWO BIOSYNTHETIC ENZYMES

A thesis presented in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
In
Chemistry

At Massey University, Turitea, Palmerston North
New Zealand

Amy Lorraine Pietersma
2007
ABSTRACT

3-Deoxy-d-arabino-heptulosonate 7-phosphate (DAH7P) synthase and 3-deoxy-d-manno-octulosonate 8-phosphate synthase (KDO8P) synthase are two enzymes that catalyse very similar reactions. DAH7P synthase is the first enzyme of the shikimate pathway and catalyses the condensation reaction between the four-carbon sugar erythrose 4-phosphate (E4P) 1 and the three-carbon sugar phosphoenolpyruvate (PEP) 2 to give the seven-carbon sugar DAH7P 3. KDO8P synthase catalyses a similar condensation reaction between the five-carbon sugar arabinose 5-phosphate (A5P) 8 and PEP 2 to give the eight-carbon sugar KDO8P 9. Early mechanistic studies have shown the reaction mechanisms of these two enzymes to be very similar and structural and phylogenetic analysis has suggested that the two enzymes share a common ancestor.

However, there are differences between the two enzymes that have not been explained by the current literature. Whereas all DAH7P synthases require a divalent metal ion for activity, there exists both metallo and non-metallo KDO8P synthases. As well as this, there is the difference in substrate specificity. The natural substrate of KDO8P synthase, A5P, is one carbon longer and has the opposite C2 stereochemistry to E4P, the natural substrate of DAH7P synthase.

This study investigates the role of the C2 and C3 hydroxyl groups of E4P and A5P in the enzyme catalysed reactions. The E4P analogues 2-deoxyE4P 38 and 3-deoxyE4P 39 have been synthesised from β-hydroxy-γ-butyrolactone and malic acid respectively. The two analogues were tested as substrates for DAH7P synthase from a variety of organisms, including N. meningitidis, the purification and characterisation of which was
carried out during the course of these studies. It was found that both analogues were substrates for DAH7P synthase. 2-DeoxyE4P was found to be the best alternative substrate for DAH7P synthase to date.

The analogous study was carried out on KDO8P synthase from *N. meningitidis* with 2-deoxyR5P 34 and 3-deoxyA5P 40. It was found that removal of the C2 and C3 hydroxyl groups of A5P was much more catastrophic for the KDO8P synthase catalysed reaction. Commercially available 2-deoxyR5P was found to be a very poor substrate, whereas 3-deoxyA5P, which was prepared according to a literature procedure was not a substrate.

The difference in substrate specificities of DAH7P synthase and KDO8P synthase is consistent with the hypothesis that despite their similarities, these two related enzymes have different mechanisms. The key step for DAH7P synthase appears to be coordination of the E4P carbonyl to the divalent metal. The metal appears to play a less important role in the KDO8P synthase reaction and the key step is the correct orientation of A5P in the active site.

![Chemical structures](image-url)
ACKNOWLEDGEMENTS

I owe the greatest thanks to my supervisor, Emily Parker, whose stubborn refusal to give up on me saw me follow this project through to the end. Her enthusiasm for her work and dedication to her students is inspirational.

Thanks to Linley Schofield for teaching me about protein purification and of course, for the chocolate cake! Many thanks also to the various members of the ‘Shikimate Group’ who have come and gone over the years and who have contributed to this project in various different ways. I owe particular thanks to the biochemists, who supplied the purified enzymes that were used in these studies, Dr Linley Schofield, Dr Fiona Cochrane and Dr Celia Webby.

Finally, thanks to my husband Mark, who has been incredibly patient and supportive through all my years of studying and has always been so proud of me.
TABLE OF CONTENTS

ABBREVIATIONS ... viii
INDEX OF FIGURES ... xi
INDEX OF TABLES ... xvi

CHAPTER ONE: INTRODUCTION

1.1 The shikimate pathway ... 1
1.2 3-Deoxy-d-arabino-heptulosonate 7-phosphate synthase .. 2
1.3 3-Deoxy-d-manno-octulosonate 8-phosphate synthase ... 2
1.4 Classification ... 3
1.5 Mechanism .. 5
1.6 Metal activation
 1.6.1 DAH7P synthase .. 9
 1.6.2 KDO8P synthase .. 11
1.7 Structural analysis
 1.7.1 Type Iα ... 12
 1.7.2 Type IβD ... 15
 1.7.3 Type IβK (non metallo) .. 17
 1.7.4 Type IβK (metallo) .. 17
 1.7.5 Type II ... 19
1.8 Structural analysis and the implications for the catalytic mechanism 20
1.9 Regulation .. 22
1.10 Inhibition .. 23
1.11 Substrate specificity
 1.11.1 DAH7P synthase ... 26
 1.11.2 KDO8P synthase .. 29
1.12 Outline of thesis ... 30
CHAPTER TWO: PURIFICATION AND CHARACTERISATION
OF A TYPE \(\alpha \) DAH7P SYNTHASE FROM \textit{NEISSERIA MENINGITIDIS}

2.1 Introduction...31
2.2 Cloning and expression..32
2.3 Purification
 2.3.1 Purification by Ion Exchange Chromatography (IEC)33
 2.3.2 Purification by Hydrophobic Interaction Chromatography34
 2.3.3 Summary..37
2.4 Molecular mass determination ...38
2.5 Initial kinetic parameters...40
2.6 Metal Dependency...41
2.7 Temperature studies ...43
2.8 Feedback inhibition studies ..44
2.9 Substrate specificity..45
2.10 Summary..46

CHAPTER THREE: EVALUATION OF 2-DEOXYE4P AND A5P
ANALOGUES WITH DAH7P AND KDO8P SYNTHASES

3.1 Introduction..48
3.2 Use of \(\gamma \)-butyrolactones to synthesise E4P analogues..........49
3.3 Synthesis of (S)-2-deoxyE4P from \(\beta \)-hydroxy-\(\gamma \)-butyrolactone........50
3.4 Enzymatic reaction of (S)-2-deoxyE4P with DAH7P synthase54
3.5 Analysis of the product formed by the reaction of 2-deoxyE4P56
and PEP
3.6 Determination of the utilisation of racemic 2-deoxyE4P by \textit{E. coli} 59
DAH7P synthase
3.7 Initial kinetic parameters of 2-deoxyE4P with DAH7P synthase from
 various organisms
 3.7.1 \textit{E. coli} DAH7P synthase ...63
 3.7.2 \textit{N. meningitidis} DAH7P synthase65
 3.7.3 \textit{P. furiosus} DAH7P synthase66
CHAPTER FOUR: SYNTHESIS AND EVALUATION OF 3-DEOXYE4P AND 3-DEOXYA5P WITH DAH7P AND KDO8P SYNTTHASES

4.1 Introduction...73

4.2 Synthesis of 3-deoxyE4P

4.2.1 Previous investigations into the synthesis of 3-deoxyE4P 74

4.2.2 Synthesis of 3-deoxyE4P from α-hydroxy-γ-butyrolactone............ 75

4.2.3 Synthesis of 3-deoxyE4P from malic acid.. 78

4.3 Initial kinetic parameters of 3-deoxyE4P with DAH7P synthase from various organisms

4.3.1 E. coli DAH7P synthase (phe)... 83

4.3.2 N. meningitidis DAH7P synthase .. 85

4.3.3 P. furiosus DAH7P synthase ... 86

4.3.4 M. tuberculosis DAH7P synthase.. 87

4.4 Proof of product formation... 88

4.5 Use of erythronic lactone to synthesise fluorinated E4P analogues 89

4.6 Synthesis of 3-deoxyA5P.. 95

4.7 Investigation of methyl 2,3-anhydro-D-lyxo-furanoside as a precursor to C3-fluorinated A5P analogues 100

4.8 Summary..104
CHAPTER FIVE: MECHANISTIC INSIGHT INTO DAH7P AND KDO8P SYNTHASES

5.1 Introduction ... 105
5.2 The role of the E4P hydroxyl groups in DAH7P synthase
 5.2.1 Role of the C2-hydroxyl of E4P ... 106
 5.2.2 Role of the C3-hydroxyl of E4P ... 112
5.3 The role of the A5P hydroxyl groups in KDO8P synthase
 5.3.1 Role of the C2-hydroxyl of A5P ... 115
 5.3.2 Role of the C3-hydroxyl of A5P ... 116
5.4 Mechanism of DAH7P and KDO8P synthases ... 117
5.5 Summary and future directions ... 121

CHAPTER SIX: EXPERIMENTAL METHODS

6.1 General biochemical methods .. 123
6.2 General chemical methods ... 126
6.3 Experimental methods for chapter two .. 128
6.4 Experimental methods for chapter three ... 132
6.5 Experimental methods for chapter four .. 139

REFERENCES .. 157
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A5P</td>
<td>arabinose 5-phosphate</td>
</tr>
<tr>
<td>AEC</td>
<td>anion exchange chromatography</td>
</tr>
<tr>
<td>ATP</td>
<td>adenosine triphosphate</td>
</tr>
<tr>
<td>BSA</td>
<td>bovine serum albumin</td>
</tr>
<tr>
<td>BTCA</td>
<td>benzyltrichloroacetimidate</td>
</tr>
<tr>
<td>BTP</td>
<td>1,3-(tris(hydroxymethyl)-methylamino)propane</td>
</tr>
<tr>
<td>CSA</td>
<td>camphor sulfonic acid</td>
</tr>
<tr>
<td>Conc.</td>
<td>concentrated</td>
</tr>
<tr>
<td>Da</td>
<td>dalton</td>
</tr>
<tr>
<td>DAH7P</td>
<td>3-deoxy-D-arabino-heptulosonate-7-phosphate</td>
</tr>
<tr>
<td>DAST</td>
<td>diethylaminosulfurtrifluoride</td>
</tr>
<tr>
<td>DIBAL</td>
<td>diisobutylaluminium hydride</td>
</tr>
<tr>
<td>DMF</td>
<td>N, N-dimethylformamide</td>
</tr>
<tr>
<td>E4P</td>
<td>erythrose-4-phosphate</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>EPSP</td>
<td>5-enolpyruvyl shikimate 3-phosphate</td>
</tr>
<tr>
<td>EtOAc</td>
<td>ethyl acetate</td>
</tr>
<tr>
<td>EtOH</td>
<td>ethanol</td>
</tr>
<tr>
<td>FPLC</td>
<td>fast protein liquid chromatography</td>
</tr>
<tr>
<td>G3P</td>
<td>glyceraldehyde 3-phosphate</td>
</tr>
<tr>
<td>G6P</td>
<td>glucose 6-phosphate</td>
</tr>
<tr>
<td>Hex</td>
<td>hexane</td>
</tr>
<tr>
<td>HIC</td>
<td>hydrophobic interaction chromatography</td>
</tr>
<tr>
<td>IPTG</td>
<td>isopropyl-1-thio-β-D-galactopyranoside</td>
</tr>
<tr>
<td>K_{cat}</td>
<td>turnover number</td>
</tr>
<tr>
<td>KDO</td>
<td>3-deoxy-D-manno-octulosonic acid</td>
</tr>
<tr>
<td>KDO8P</td>
<td>3-deoxy-D-manno-octulosonate 8-phosphate</td>
</tr>
<tr>
<td>K_i</td>
<td>inhibition constant</td>
</tr>
<tr>
<td>K_M</td>
<td>Michaelis constant</td>
</tr>
<tr>
<td>L5P</td>
<td>lyxose 5-phosphate</td>
</tr>
<tr>
<td>LAH</td>
<td>lithium aluminum hydride</td>
</tr>
</tbody>
</table>
LB luria broth
MWCO molecular weight cut-off
NAD\(^+\) nicotinamide adenine dinucleotide
NADH nicotinamide adenine dinucleotide reduced form
OD optical density
PAGE polyacrylamide gel electrophoresis
PEP phosphoenolpyruvate
2-PGA 2-phosphoglyceric acids
Phe phenylalanine
P\(_i\) inorganic phosphate
pI isoelectric point
ppm parts per million
R5P ribose 5-phosphate
R\(_f\) retention factor
Rpm revolutions per minute
Sat. saturated
SDS sodium dodecyl sulfate
SEC size exclusion chromatography
T4P threose 4-phosphate
TBDMS tert-butyldimethylsilyl
TBDPS tert-butyldiphenylsilyl
THF tetrahydrofuran
TLC thin layer chromatography
Trp tryptophan
Tyr tyrosine
UV ultra-violet
<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Substrate/Reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAH7P synthase</td>
<td>3-deoxy-D-arabino-heptulosonate-7-phosphate</td>
</tr>
<tr>
<td>EPSP synthase</td>
<td>5-enolpyruvyl shikimate 3-phosphate synthase</td>
</tr>
<tr>
<td>G6P dehydrogenase</td>
<td>glucose 6-phosphate dehydrogenase</td>
</tr>
<tr>
<td>KDO8P synthase</td>
<td>3-deoxy-D-manno-octulosonate 8-phosphate synthase</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Organism</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. aeolicus</td>
<td>Aquifex aeolicus</td>
</tr>
<tr>
<td>A. pyrophilus</td>
<td>Aquifex pyrophilus</td>
</tr>
<tr>
<td>B. subtilis</td>
<td>Bacillus subtilis</td>
</tr>
<tr>
<td>C. psittaci</td>
<td>Chlamydia psittaci</td>
</tr>
<tr>
<td>E. coli</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>H. pylori</td>
<td>Helicobacter pylori</td>
</tr>
<tr>
<td>M. tuberculosis</td>
<td>Mycobacterium tuberculosis</td>
</tr>
<tr>
<td>N. crassa</td>
<td>Neurospora crassa</td>
</tr>
<tr>
<td>N. gonorrhoeae</td>
<td>Neisseria gonorrhoeae</td>
</tr>
<tr>
<td>P. furiosus</td>
<td>Pyrococcus furiosus</td>
</tr>
<tr>
<td>S. typhimurium</td>
<td>Salmonella typhimurium</td>
</tr>
<tr>
<td>S. cerevisiae</td>
<td>Saccharomyces cerevisiae</td>
</tr>
<tr>
<td>T. maritima</td>
<td>Thermotoga maritima</td>
</tr>
<tr>
<td>N. meningitidis</td>
<td>Neisseria meningitidis</td>
</tr>
</tbody>
</table>
INDEX OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>The seven enzyme-catalysed reactions of the shikimate pathway</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>The reaction catalysed by DAH7P synthase</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>The reaction catalysed by KDO8P synthase</td>
<td>3</td>
</tr>
<tr>
<td>1.4</td>
<td>The steric course of the DAH7P synthase reaction between E4P and PEP</td>
<td>6</td>
</tr>
<tr>
<td>1.5</td>
<td>Two proposed mechanisms for DAH7P synthase catalysis</td>
<td>7</td>
</tr>
<tr>
<td>1.6</td>
<td>Proposed cyclic mechanism for the formation of KDO8P</td>
<td>8</td>
</tr>
<tr>
<td>1.7</td>
<td>Phosphonate analogue 14 of proposed cyclic intermediate 13</td>
<td>8</td>
</tr>
<tr>
<td>1.8</td>
<td>Comparison of the quaternary structures of E. coli DAH7P synthase (phe) and S. cerevisiae DAH7P synthase (tyr)</td>
<td>13</td>
</tr>
<tr>
<td>1.9</td>
<td>E. coli DAH7P synthase (phe) monomer structure</td>
<td>14</td>
</tr>
<tr>
<td>1.10</td>
<td>PEP binding site of E. coli DAH7P synthase (phe)</td>
<td>15</td>
</tr>
<tr>
<td>1.11</td>
<td>Monomer structure of P. furiosus DAH7P synthase</td>
<td>16</td>
</tr>
<tr>
<td>1.12</td>
<td>Comparison of the active sites of Aquifex aeolicus KDO8P synthase</td>
<td>18</td>
</tr>
<tr>
<td>1.13</td>
<td>Borohydride reduction of KDO8P</td>
<td>23</td>
</tr>
<tr>
<td>1.14</td>
<td>Inhibitors for KDO8P synthase</td>
<td>24</td>
</tr>
<tr>
<td>1.15</td>
<td>Modified KDO8P synthase inhibitors</td>
<td>25</td>
</tr>
<tr>
<td>1.16</td>
<td>Isosteric phosphonate inhibitor for KDO8P synthase</td>
<td>25</td>
</tr>
<tr>
<td>1.17</td>
<td>Amino phosphonate inhibitor for DAH7P synthase</td>
<td>26</td>
</tr>
<tr>
<td>1.18</td>
<td>PEP analogues tested as substrates for E. coli (phe) DAH7P synthase</td>
<td>27</td>
</tr>
<tr>
<td>1.19</td>
<td>Phosphonate and homophosphophonate E4P analogues</td>
<td>27</td>
</tr>
<tr>
<td>1.20</td>
<td>E4P analogues tested as substrates for E. coli DAH7P synthase (phe)</td>
<td>28</td>
</tr>
<tr>
<td>1.21</td>
<td>Phosphonate analogue of PEP</td>
<td>29</td>
</tr>
<tr>
<td>2.1</td>
<td>Chromatogram of AEC using Source 15Q® column</td>
<td>34</td>
</tr>
<tr>
<td>2.2</td>
<td>Chromatogram trace of HIC, using Source Phe® column</td>
<td>35</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>SDS-PAGE analysis of the stages of purification of N. meningitidis DAH7P synthase</td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>SDS-PAGE analysis of N. meningitidis DAH7P synthase, before and after size-exclusion chromatography</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>Standard curve of log molecular mass versus elution time for N. meningitidis DAH7P synthase</td>
<td></td>
</tr>
<tr>
<td>2.6</td>
<td>Native PAGE analysis of N. meningitidis DAH7P synthase and E. coli DAH7P synthase</td>
<td></td>
</tr>
<tr>
<td>2.7</td>
<td>Michaelis-Menten plots for determination of K_M values for E4P and PEP with N. meningitidis DAH7P synthase</td>
<td></td>
</tr>
<tr>
<td>2.8</td>
<td>Effect of temperature on specific activity of purified N. meningitidis DAH7P synthase</td>
<td></td>
</tr>
<tr>
<td>2.9</td>
<td>Partial sequence alignment of S. cerevisiae (phe), S. cerevisiae (tyr), E. coli (tyr), E. coli (phe) and N. meningitidis DAH7P synthases</td>
<td></td>
</tr>
<tr>
<td>2.10</td>
<td>Phosphorylated monosaccharides tested as substrates for N. meningitidis DAH7P synthase</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Synthesis of racemic 2-deoxyE4P</td>
</tr>
<tr>
<td>3.2</td>
<td>Potential E4P analogue products from γ-butyrolactones</td>
</tr>
<tr>
<td>3.3</td>
<td>Synthesis of (S)-2-deoxyE4P</td>
</tr>
<tr>
<td>3.4</td>
<td>The six membered ring product 47 with the primary alcohol exposed</td>
</tr>
<tr>
<td>3.5</td>
<td>The two possible five-membered ring products 50 from the protection of the aldehyde of 46</td>
</tr>
<tr>
<td>3.6</td>
<td>1H NMR spectra of DAH7P and 5-deoxyDAH7P</td>
</tr>
<tr>
<td>3.7</td>
<td>The two ways that 5-deoxyDAH7P could be formed by reaction of 2-deoxyE4P with PEP</td>
</tr>
<tr>
<td>3.8</td>
<td>Glucose-6-phosphate dehydrogenase assay</td>
</tr>
<tr>
<td>3.9</td>
<td>Assays of enantiopure and racemic 2-deoxyE4P with P. furiosus DAH7P synthase</td>
</tr>
</tbody>
</table>
3.10 Assays following the loss of PEP at 232nm in the presence of enantiopure and racemic 2-deoxyE4P with *E. coli* DAH7PS (phe)

3.11 Michaelis–Menten and Lineweaver-Burk plots for determination of K_M values for racemic 2-deoxyE4P and PEP in the presence of racemic 2-deoxyE4P for *E. coli* DAH7P synthase (phe)

3.12 Michaelis–Menten and Lineweaver-Burk plots for determination of the K_M values for (S)-2-deoxyE4P and PEP in the presence of (S)-2-deoxyE4P for *E. coli* DAH7P synthase (Phe)

3.13 Michaelis–Menten and Lineweaver-Burk plots for determination of the K_M value for (S)-2-deoxyE4P with *N. meningitidis* DAH7P synthase

3.14 Michaelis–Menten and Lineweaver-Burk plots for determination of the K_M values for (S)-2-deoxyE4P and PEP in the presence of (S)-2-deoxyE4P for *M. tuberculosis* DAH7P synthase

3.15 1H NMR spectra of 5-deoxyDAH7P and (5S)-[5-2H]-5-deoxyDAH7P

3.16 Michaelis–Menten and Lineweaver-Burk plots for determination of the K_M value for 2-deoxyR5P with *N. meningitidis* KDO8P synthase

4.1 Outline of the strategy used by Dr Rost to synthesise 3-deoxyE4P

4.2 Synthesis of 3-deoxyE4P from α-hydroxy-γ-butyrolactone

4.3 The possible products from the aldehyde protection reaction and their phosphorylated products

4.4 Synthesis of 3-deoxyE4P from malic acid

4.5 1H NMR spectra showing the deprotection of the dimethylacetal to 3-deoxyE4P

4.6 Potential products from the commercially available isomers of malic acid

4.7 Michaelis–Menten and Lineweaver-Burk plots for determination of the K_M value for racemic 3-deoxyE4P with *E. coli* DAH7P synthase (phe)

4.8 Michaelis–Menten and Lineweaver-Burk plots for determination of the K_M value for (R)-3-deoxyE4P with *E. coli* DAH7P synthase (phe)
4.9 Michaelis–Menten and Lineweaver-Burk plots for determination of the K_M value for (R)-3-deoxyE4P with *N. meningitidis* DAH7P synthase

4.10 Michaelis–Menten and Lineweaver-Burk plots for determination of the K_M values for (R)-3-deoxyE4P and PEP in the presence of (R)-3-deoxyE4P with *P. furiosus* DAH7P synthase

4.11 Michaelis–Menten and Lineweaver-Burk plots for determination of the K_M values for (R)-3-deoxyE4P and PEP in the presence of (R)-3-deoxyE4P with *M. tuberculosis* DAH7P synthase

4.12 Thiobarbituric acid test

4.13 Potential route to fluorinated E4P analogues

4.14 Elimination product 86 from the benzylation of erythronic lactone in DMF

4.15 Fluorination of α-hydroxy-γ-butyrolactone with DAST

4.16 19F NMR spectra of 82 and 83

4.17 Protection of erythronic lactone with TBDMSCl

4.18 Synthesis of 2,3-anhydro-D-lyxo-furanoside from D-xylose

4.19 Potential products from the epoxide opening of 94 by the hydride ion

4.20 1H NMR spectrum of the α-anomer of 95

4.21 Synthesis of 3-deoxyA5P

4.22 1H NMR spectra of 99 and 3-deoxyA5P 40

4.23 Methyl 2,3-anhydro-5-O-benzyl-D-lyxo-furanoside

4.24 Fluorination of epoxide 94 to give 101

4.25 19F NMR of 101

4.26 Benzylation of 94 to give 100

5.1 The reactions catalysed by DAH7P and KDO8P synthases

5.2 Phosphorylated monosaccharides shown to be substrates for DAH7P synthase

5.3 Active site of *P. furiosus* DAH7P synthase with E4P modeled in, showing the two different conformations of Pro61

5.4 L-T4P

5.5 Proposed cyclic mechanism of DAH7P synthase

5.6 Active site of *P. furiosus* DAH7P synthase with E4P modeled in
5.7 Active site of *A. aeolicus* KDO8P synthase showing the C2-hydroxyl of A5P interacting with the metal ion via a Water molecule

5.8 Comparison of active sites and proposed (partial) reaction mechanisms for *A. aeolicus* KDO8P synthase and *P. furiosus* DAH7P synthase
INDEX OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Two step purification procedure of N. meningitidis DAH7P synthase</td>
<td>32</td>
</tr>
<tr>
<td>2.2</td>
<td>Protein standard molecular masses and elution times from the Superdex S200 column</td>
<td>39</td>
</tr>
<tr>
<td>2.3</td>
<td>Kinetic parameters of characterised type Iα DAH7P synthases</td>
<td>41</td>
</tr>
<tr>
<td>2.4</td>
<td>Activation of purified N. meningitidis DAHPS by various divalent metal ions</td>
<td>42</td>
</tr>
<tr>
<td>2.5</td>
<td>The effect of aromatic amino acids on the activity of N. meningitidis DAH7P synthase</td>
<td>45</td>
</tr>
<tr>
<td>3.1</td>
<td>Kinetic parameters for E4P and PEP with enzymes from various organisms</td>
<td>62</td>
</tr>
<tr>
<td>3.2</td>
<td>Kinetic parameters of racemic 2-deoxyE4P with E. coli DAH7P synthase (phe)</td>
<td>62</td>
</tr>
<tr>
<td>3.3</td>
<td>Kinetic parameters of (S)-2-deoxyE4P with DAH7P synthase from various organisms</td>
<td>62</td>
</tr>
<tr>
<td>3.4</td>
<td>Kinetic parameters of A5P and 2-deoxyR5P with KDO8P synthase from E. coli and N. meningitidis</td>
<td>70</td>
</tr>
<tr>
<td>4.1</td>
<td>Kinetic analysis of 3-deoxyE4P with DAH7P synthase from various organisms</td>
<td>83</td>
</tr>
<tr>
<td>5.1</td>
<td>Kinetic parameters of DAH7P synthase with four-carbon analogues of E4P</td>
<td>110</td>
</tr>
<tr>
<td>5.2</td>
<td>Kinetic parameters of DAH7P synthase with five-carbon analogues of E4P</td>
<td>111</td>
</tr>
<tr>
<td>5.3</td>
<td>Kinetic parameters of KDO8P synthase with five-carbon analogues of A5P</td>
<td>115</td>
</tr>
</tbody>
</table>
PUBLICATIONS

Parts of this thesis have been published in the following publications:
