Performance and physiological consequences of roll dynamics during cross-country mountain bike racing.

A thesis presented in partial fulfilment of the requirements for

The Doctor of Philosophy via publication

in

Sport & Exercise Science

Massey University, Manawatu Campus, New Zealand

Paul William Macdermid

2015
STUDENT DECLARATION

I hereby declare that this thesis is my own work and does not, to the best of my knowledge, contain material from any other source unless due acknowledgement is made. The thesis was completed under the guidelines set out by Massey University's College of Health, for the degree of Doctorate of Philosophy and has not been submitted for a degree or diploma at any other academic institution.

Candidate: ...

Date: ...
ABSTRACT

Background: Understanding the interaction between physical work done and subsequent physiological responses is key to the prescription of optimal training. Olympic format cross-country mountain bike racing presents unique challenges with regards to understanding the relationship between propulsive and non-propulsive work, the interaction with performance, and associated physiological responses.

Aims: The aims of this thesis were to: 1) Determine the nature of work demand during simulated cross-country mountain bike racing; 2) Quantify vibration exposure during cross-country mountain biking and the interaction of bike-body in the subsequent energy dissipation; 3) Establish additional work done and physiological responses to riding on surface-terrain variations; 4) Investigate technological interventions designed to reduce vibration exposure during cross-country mountain biking and the interaction with performance and cycling economy.

Methods & Results: To address these aims four original experimental investigations involving two descriptive elements and four experimental interventions were conducted.

Study 1: Participants (n=7) completed a submaximal treadmill test on bicycles in order to establish the power:oxygen uptake relationship, which when combined with an ergometer maximal ramp test, enabled the prediction of oxygen demand during the field and thus estimations of aerobic and anaerobic contributions to work done. Field work involved participants riding at race pace on a cross-country mountain bike course whilst cadence, power output, oxygen consumption, heart rate, speed and geographical position were recorded. The data show power output and cadence to be highly variable with one power surge every 32 s and a supramaximal effort (greater than power associated with VO₂ max) every 106 s. The majority of time (20.7 ± 8.3 %) was spent pedalling at a low velocity-high force, whilst physiological
variables $\% \dot{V}O_2_{\text{max}} (77 \pm 5 \%)$ and $\% HR_{\text{max}} (93 \pm 2 \%)$ were consistently elevated to a high level throughout the lap. Importantly, the results identified that terrain significantly affected power output (70.9 7.5 vs 41.0 \pm 9.2 W_{max}); $\% \dot{V}O_2_{\text{max}} (80 \pm 2$ vs $72 \pm 4 \%)$ but not $\% HR_{\text{max}} (94 \pm 2$ vs $91 \pm 1 \%)$ for uphill and downhill, respectively. Accordingly, it was hypothesised that there was an additional non-propulsive physical stress during downhill riding, affording less recovery compared to road cycling.

Study 2: Participant (n=8) completed one lap of a cross-country track at race pace under two conditions (26” vs 29” wheels) whilst tri-axial accelerometers located on the bicycle (handlebar and seatpost) and the rider (wrist, ankle, lower back, and forehead) recorded accelerations (128 Hz) to quantify vibrations over the whole lap and for terrain specific sections (uphill vs downhill). The result showed that significant vibration attenuation occurred from locations at the bike and bike-body interface compared to the lower back and forehead. The reduction of accelerations at the lower back and forehead implies additional non-propulsive, muscular challenges which may limit recovery during periods of non-propulsive load.

The hypothesis that 29” wheels would reduce vibration exposure was inconclusive as 29” wheels proved to be significantly quicker (p=0.0020) compared to 26” wheels even though no difference was found between power output (p=0.3062) and heart rate (p=0.8423). As such the greater velocity incurred by 29” wheels may have caused the greater vibration exposure seen in the 29” wheels.

Study 3: Participants (n=7) ascended a tar-sealed road climb and a singletrack off-road climb of identical length and gradient at the same speed. Tri-axial accelerometers (128 Hz) located at the handlebar, wrist, ankle, seat post, lower back, and forehead were used to quantify vibration exposure while power output, cadence, heart rate and oxygen consumption were used to determine work done and physiological cost. Accelerations signified (P<0.0001) greater
vibration exposure for off-road compared to tar-sealed riding and post-hoc analysis identified differences at the bike and bike-body interface but not the lower back and forehead. This indicates a greater non-propulsive component in the form of vibration damping to off-road cycling compared to road cycling, reflected by significant increases in work done (280 ± 69 vs 312 ± 74 W; p=0.0003). This was associated with a greater rate of oxygen consumption (48.5 ± 7.5 vs 51.4 ± 7.3 ml·kg⁻¹·min⁻¹; p=0.0033) and a higher heart rate (161 ± 10 vs 170 ± 10 bpm; p=0.0001) for tar-sealed road and off-road conditions, respectively. These findings advocate that technological interventions aimed at decreasing vibration exposure could increase cycling economy and therefore improve performance.

Study 4: Participants (n=8) completed a lap of a cross-country mountain bike circuit under two conditions (hardtail and full suspension) incorporating the same downhill section twice and separated by a forestry road climb. The participants were asked to complete the downhill sections at race pace while the climb was performed at a power output associated with respiratory compensation point. The aim of this was to control physiological variables at the start of the second downhill. Tri-axial accelerometers (located at the handlebar, wrist, ankle, seat post, lower back, and forehead) were used to quantify vibration exposure while simultaneous power output, cadence, heart rate and oxygen consumption measurements enabled assessment of work done and physiological response. Performance was determined by time to complete the overall lap and specific sections.

Physiological demand of loaded downhill riding (2nd descent) was greater than unloaded (1st descent) (p<0.0001). Full suspension decreased total vibration exposure (p<0.01) but had no effect on performance times (p=0.9697) or power outputs (p=0.8600) whilst post-hoc analysis identified trial differences (downhill 1 vs downhill 2) in power output (p<0.0001) but not for time (p>0.05). Interestingly, the reduction of non-propulsive work did not affect oxygen consumption (p=0.9840), heart rate (p=0.9779) or cycling economy (p=0.9240).
Conclusions: This thesis demonstrates that surface-terrain negatively affects cycling economy, presenting greater physiological responses as a consequence of increased non-propulsive work. This is likely due to vibration damping throughout the soft tissue of the limbs in order to protect the central nervous system. Reductions in vibration exposure diminished work done and physiological response for surface controlled interventions, yet mechanical system modifications capable of reducing exposure were unable to alter physiological response to work done.
ACKNOWLEDGEMENTS

I would like to express my thanks to all those that have helped in the completion of this thesis:

To Steve and Phil, the consummate cycling enthusiasts who embraced the sport of cross-country mountain biking and guided me through the course of study and became good friends in the process. Phil – for all those hours you spent with me in front of the computer exploring the possibilities of Matlab and Math in relation to sports analysis. I certainly look at things from a different perspective now. Steve, for keeping me on the straight and narrow, avoiding all the tangents, adding your experience and expertise to the papers and even getting on the bike and participating at busy times.

To all those that participated and persevered with their participation in my studies. Thanks for your time and camaraderie in the enjoyment of exploring your sport. Hopefully, you all learnt something in the process.

Fiona, who was always there to bounce ideas off, trial protocols, read through proposals and manuscripts to make sure they made sense. I can't thank you enough.
TABLE OF CONTENTS

STUDENT DECLARATION ... ii

ABSTRACT ... iii

ACKNOWLEDGEMENTS .. vii

TABLE OF CONTENTS ... viii

LIST OF TABLES ... x

LIST OF FIGURES .. xi

ABBREVIATIONS .. xiii

SUBMISSIONS AND PUBLICATIONS ... xiv

Publications .. xiv
Conference Presentations .. xv
Industry Media .. xv

CHAPTER ONE: INTRODUCTION ... 1

CHAPTER TWO: REVIEW OF THE LITERATURE ... 4

Descriptive Characteristics of Elite XCO-MTB Athletes. .. 4
Physiological Correlates of performance in XCO-MTB. ... 7
Work done and the physiological consequences during XCO-MTB. .. 10
Non-propulsive work ... 14

CHAPTER THREE: THESIS STRUCTURE ... 19

Aims and Hypothesis .. 21

CHAPTER FOUR: STUDY ONE .. 25

MECHANICAL WORK AND PHYSIOLOGICAL RESPONSES TO SIMULATED CROSS-COUNTRY MOUNTAIN BIKE RACING.. 25
Abstract ... 25
Introduction ... 26
Methods .. 27
Results ... 29
Discussion ... 34
Conclusion ... 37
Practical Implications ... 43
Tables .. 43
Figures .. 46

CHAPTER FIVE: STUDY TWO .. 51

TRANSFERANCE OF 3D ACCELERATIONS DURING CROSS-COUNTRY MOUNTAIN BIKING. 51
Abstract ... 51
Introduction ... 52
Methods .. 53
Results ... 56
Discussion ... 60
Practical applications ... 63
Figures .. 69
Tables .. 74
<table>
<thead>
<tr>
<th>Chapter Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAPTER SIX: STUDY THREE</td>
<td>78</td>
</tr>
<tr>
<td>THE EFFECTS OF VIBRATIONS EXPERIENCED DURING ROAD VS OFFROAD CYCLING</td>
<td>78</td>
</tr>
<tr>
<td>Abstract</td>
<td>79</td>
</tr>
<tr>
<td>Introduction</td>
<td>80</td>
</tr>
<tr>
<td>Methods</td>
<td>82</td>
</tr>
<tr>
<td>Results</td>
<td>86</td>
</tr>
<tr>
<td>Discussion</td>
<td>88</td>
</tr>
<tr>
<td>Conclusion</td>
<td>91</td>
</tr>
<tr>
<td>Tables</td>
<td>92</td>
</tr>
<tr>
<td>CHAPTER SEVEN: STUDY FOUR</td>
<td>96</td>
</tr>
<tr>
<td>THE IMPACT OF UPHILL CYCLING AND BICYCLE SUSPENSION ON DOWNSHILL PERFORMANCE</td>
<td>96</td>
</tr>
<tr>
<td>DURING CROSS-COUNTRY MOUNTAIN BIKING</td>
<td>97</td>
</tr>
<tr>
<td>Abstract</td>
<td>98</td>
</tr>
<tr>
<td>Introduction</td>
<td>101</td>
</tr>
<tr>
<td>Methods</td>
<td>106</td>
</tr>
<tr>
<td>Results</td>
<td>110</td>
</tr>
<tr>
<td>Discussion</td>
<td>115</td>
</tr>
<tr>
<td>Conclusion</td>
<td>116</td>
</tr>
<tr>
<td>Figures</td>
<td>120</td>
</tr>
<tr>
<td>Tables</td>
<td></td>
</tr>
<tr>
<td>CHAPTER EIGHT: SUMMARY OF FINDINGS</td>
<td>121</td>
</tr>
<tr>
<td>Overview of work</td>
<td>121</td>
</tr>
<tr>
<td>Summary</td>
<td>122</td>
</tr>
<tr>
<td>Limitations of Thesis</td>
<td>127</td>
</tr>
<tr>
<td>Future Directions</td>
<td>129</td>
</tr>
<tr>
<td>Conclusion</td>
<td>131</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>133</td>
</tr>
<tr>
<td>APPENDICES</td>
<td>145</td>
</tr>
<tr>
<td>Appendix 1</td>
<td>146</td>
</tr>
<tr>
<td>Appendix 2</td>
<td>157</td>
</tr>
<tr>
<td>Appendix 3</td>
<td>167</td>
</tr>
<tr>
<td>Appendix 4</td>
<td>177</td>
</tr>
<tr>
<td>Appendix 5</td>
<td>184</td>
</tr>
<tr>
<td>Appendix 6</td>
<td>185</td>
</tr>
<tr>
<td>Appendix 7</td>
<td>186</td>
</tr>
<tr>
<td>Appendix 8</td>
<td>190</td>
</tr>
<tr>
<td>Appendix 9</td>
<td>193</td>
</tr>
</tbody>
</table>
LIST OF TABLES

TABLE 1.1. Structure of the thesis and summary of the aims covered by each chapter. ...20
TABLE 2.1. Laboratory test characteristics of the subjects (n=7) for the sub-maximal treadmill test and the maximal ergometer test. Where results are given per kg this refers to total weight of the individual subject's clothing, bike plus powermeter and the portable gas analyser. ..44
TABLE 2.2. Mean ± SD for performance, mechanical and physiological measures sampled throughout the field trial and separated based on terrain (hill (H) and downhill (DH)) and order as depicted in Figure 1. ..46
TABLE 3.1. Mean ± SD for performance variables measured throughout the field trial and separated based on terrain (hill (H) and downhill (DH)) for the depicted order. ..74
TABLE 3.2. Mean ± SD for maximum frequency (Hz) of accelerations at points of contact between bike-body during a XCO-MTB lap, and separated for terrain, frequency banding and wheel size. ..75
TABLE 3.3. Mean ± SD for magnitude (g²) at maximum frequency of accelerations at points of contact between bike-body during a XCO-MTB lap, and separated for terrain, frequency banding and wheel size. ..76
TABLE 3.4. Mean ± SD for half frequency of accelerations at points of contact between bike-body during a XCO-MTB lap, and separated for terrain, frequency banding and wheel size. ..77
TABLE 4.1. Mean ± SD for maximum frequency (Hz) and magnitude (g²) of accelerations during the hill climb, separated for frequency banding and condition. ..92
TABLE 5.1. Mean ± SD for laboratory ramp test. ..120
LIST OF FIGURES

Figure 1.1: 2013 UCI Pietermaritzburg XCO-MTB World Championship course schematic and profile.
WHERE, * signifies technical section; ➔ uphill with hills numbered (H1...); ➞ downhill with downhill numbered (DH1...). ... 2

Figure 2.1: MEAN ± SD body mass index for the male medal winners from the last four Olympic Games. 6

Figure 2.2: Images showing the technical nature of modern day XCO-MTB events during study 4 of this
thesis and inserts at the 2012 Summer Olympic Games. .. 6

Figure 2.3: Categorisation of time spent during specific intensity zones during XCO-MTB racing based on
laboratory determined submaximal thresholds (AT and IAT). Heart rate based data taken from
Impellizzeri et al, 2002 and power output from Stapelfeldt et al, 2004. .. 12

Figure 2.4: Image showing the human bodies resonance frequency ranges of various body sections whilst seated on an XCO-MTB. .. 16

Figure 4.1: Course outline for the XCO-MTB lap used during the study. WHERE: ➔ indicates start and finish,
⇒ refers to a climb and ➞ signifies a descent. Numbers encircled 1-7 on the map are related to climbs
or descents highlighted on the schematic profile of the course. Section characteristics are provided in
the table below the schematic profile. .. 46

Figure 4.2: Data recorded (MEAN ± SD) over the start straight and averaged every 5 s. A. Power output
profile (W), B. Power output profile (W kg⁻¹), C. Oxygen deficit (L·min⁻¹), and D. Estimated aerobic
and anaerobic contribution to work done (%). .. 47

Figure 4.3: Frequency distribution (MEAN ± SD) for physiological variables during the field test
represented as percentages of maximum from laboratory tests for A. % VO₂max; B. % HRmax; and work
variables C. % Wmax; and D. Cadence (rpm). .. 48

Figure 4.4: An individual subject's data over the whole lap for: A. Altitude (m), power output (W·kg⁻¹), %
VO₂max, and % HRmax averaged over 5 s periods for the whole field test duration, with the average
power (horizontal dashed line) and normalized power (horizontal solid line); B. Quadrant analysis
separated by the mean effective pedal force and circumferential velocity of that subject, at
respiratory compensation point from laboratory test and indicating the difference between hill and
downhill sections .. 49

Figure 4.5: MEAN SD surge analysis for subjects (n=7) over the whole lap and based on total weight of
subject, bike and gas analysed. .. 50

Figure 5.1: Course outline for the XCO-MTB lap used during the study. WHERE: ➔ indicates start and finish,
⇒ refers to a climb and ➞ signifies a descent. Numbers encircled 1-3 on the map are related to climbs
or descents highlighted on the schematic profile of the course. Section characteristics are provided in
the table to the right of the schematic profile. .. 69

Figure 5.2: A photograph depicting accelerometer locations during the trial. .. 70

Figure 5.3: MEAN ± SD AMPLITUDE (RMS) for A. Total; B. Vertical; and C. Horizontal components of
acceleration over the whole lap. ○ signifies 26” wheel trial while ● signifies 29” wheels. 71

Figure 5.4: Mean acceleration expressed as RMS for accelerometer locations for different terrain
segments as described in figure 1 (H1 = Uphill 1; DH1 = Downhill 2; H2 = Uphill 2; DH2 = Downhill 2).
A. Total acceleration for 26” wheels; B. Total acceleration for 29” wheels; C. Vertical acceleration
for 26” wheels; D. Vertical acceleration for 29” wheels; E. Horizontal acceleration for 26” wheels;
F. Horizontal acceleration for 26” wheels. .. 72

Figure 5.5: Spectral analysis of vertical accelerations for subject 3 during the different sections of the
course. WHERE, A. is uphill 1; B. is downhill 1; C. is uphill 2; and D. is downhill 2. 73

Figure 6.1: MEAN ± SD amplitude (RMS) for A. Total; B. Vertical; and C. Horizontal components of
acceleration over the climb. ○ signifies the tar-sealed road condition, while ● signifies single-track
off-road condition. ... 93

Figure 6.2: MEAN ± SD for half frequency data from spectral analysis for each condition (Tar-sealed road
and the single-track off-road) and accelerometer position. ... 94

Figure 6.3: MEAN ± SD for A. Power Output (W); B. VO₂ (ML·min⁻¹·kg⁻¹); and C. Heart Rate (bpm) for both
the tar-sealed road and the single-track off-road. .. 95

Figure 7.1: Course outline and profile signifying the terrain split sections for the field trial used in this
study. ... 116

Figure 7.2: MEAN ± SD for A. Time (s); B. Power Output (W) for terrain segments as described in figure 1
(DH1 = Downhill 1; H1 = Uphill 1; DH2 = Downhill 2). ○ signifies hardtail (HT) while ● signifies full
suspension condition. .. 116

Figure 7.3: Comparisons between hardtail (HT) and full suspension (FS) for: A. Total accelerations for
downhill 1 (DH1); B. Total accelerations hill 1 (H1); C. Total accelerations downhill 2 (DH2); D.
Vertical accelerations downhill 1 (DH1); E. Vertical accelerations for hill 1 (H1); F. Vertical
ACCELERATIONS FOR DOWNHILL 2 (DH2); G. HORIZONTAL ACCELERATIONS FOR DOWNHILL 1 (DH1); G. HORIZONTAL ACCELERATIONS FOR HILL 1 (H1); F. HORIZONTAL ACCELERATIONS FOR DOWNHILL 2 (DH2). □ signifies hardtail (HT) while ■ signifies full suspension condition. .. 117

FIGURE 7.4: MEAN ± SD FOR A. HEART RATE (HR); B. OXYGEN CONSUMPTION (VO2); C. CYCLING ECONOMY (CE) FOR DIFFERENT TERRAIN SEGMENTS AS DESCRIBED IN FIGURE 1 (DH1 = DOWNHILL 1; H1 = HILL 1; DH2 = DOWNHILL 2). □ signifies hardtail while ■ signifies full suspension condition. .. 118

FIGURE 7.5: FIVE SECOND AVERAGE DATA FOR A. HEART RATE (HR), AND B. OXYGEN CONSUMPTION (VO2) FOR DOWNHILL 1 AND DOWNHILL 2 FOR BOTH CONDITIONS. ● signifies downhill 1 for the hardtail; ● downhill 1 for full suspension; ■ downhill 2 for hardtail; and ■ downhill 2 for full suspension. 119

FIGURE 8.1: MEAN VERTICAL ACCELERATIONS (g) EXPERIENCED BY PARTICIPANTS DURING A XCO-MTB LAP PERFORMED AT RACE PACE FOR ACCELEROMETER LOCATIONS: ANKLE, HANDLEBAR, SEATPOST, WRIST, LOWER BACK, AND FOREHEAD. THE SIZE OF THE CIRCLES ARE IN PROPORTION. ... 124

FIGURE 8.2: MEAN TOTAL ACCELERATIONS (g) EXPERIENCED BY PARTICIPANTS DURING A CLIMB IDENTICAL IN LENGTH AND GRADIENT BUT DIFFERING IN SURFACE (TARSEALD VS OFF-ROAD) PERFORMED AT THE SAME SPEED WITH ACCELERATIONS MEASURED AT: ANKLE, HANDLEBAR, SEATPOST, WRIST, LOWER BACK, AND FOREHEAD. THE SIZE OF THE CIRCLES ARE IN PROPORTION. ... 125
ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>AT</td>
<td>Anaerobic Threshold</td>
</tr>
<tr>
<td>BM</td>
<td>Body Mass</td>
</tr>
<tr>
<td>BMI</td>
<td>Body Mass Index</td>
</tr>
<tr>
<td>BPM</td>
<td>Beats per minute</td>
</tr>
<tr>
<td>CV</td>
<td>Coefficient of Variation</td>
</tr>
<tr>
<td>DH</td>
<td>Downhill</td>
</tr>
<tr>
<td>H</td>
<td>Hill</td>
</tr>
<tr>
<td>HR</td>
<td>Heart Rate</td>
</tr>
<tr>
<td>IAT</td>
<td>Individual Anaerobic Threshold</td>
</tr>
<tr>
<td>ISO</td>
<td>International Standard Organisation</td>
</tr>
<tr>
<td>MTB</td>
<td>Mountain Bike</td>
</tr>
<tr>
<td>O₂</td>
<td>Oxygen</td>
</tr>
<tr>
<td>OB LA</td>
<td>Onset of Blood Lactate Accumulation</td>
</tr>
<tr>
<td>Off-Rd</td>
<td>Non-smooth (tar-sealed) surface</td>
</tr>
<tr>
<td>RCP</td>
<td>Respiratory Compensation Point</td>
</tr>
<tr>
<td>Rd</td>
<td>Road (tar-sealed)</td>
</tr>
<tr>
<td>RMS</td>
<td>Root Mean Squared</td>
</tr>
<tr>
<td>rpm</td>
<td>revolutions per minute</td>
</tr>
<tr>
<td>SD</td>
<td>Standard Deviation</td>
</tr>
<tr>
<td>UCI</td>
<td>Union Cycliste Internationale</td>
</tr>
<tr>
<td>VO₂</td>
<td>Volume of Oxygen utilised per minute in time</td>
</tr>
<tr>
<td>Wₘₐₓ</td>
<td>The maximal power output obtained over a 60 s epoch during a cycle ergometry ramp test</td>
</tr>
<tr>
<td>XCO-MTB</td>
<td>Olympic Format Cross-Country Mountain Biking</td>
</tr>
</tbody>
</table>
SUBMISSIONS AND PUBLICATIONS

Publications

Conference Presentations

Industry Media

