Mathematical Models
for Dispersal of Aerosol Droplets
in an Agricultural Setting

A thesis presented in partial fulfilment of the requirements
for the degree of

Doctor of Philosophy in Mathematics

at Massey University, Albany,

New Zealand

Sharleen Anne Harper
2008
Abstract

Agrichemical spray drift is an issue of concern for the orcharding industry. Shelterbelts surrounding orchard blocks can significantly reduce spray drift by intercepting droplets from the airflow. At present, there is little information available with which to predict drift deposits downwind, particularly in the case of a fully-sheltered orchard block.

In this thesis, we develop a simple mathematical model for the transport of airborne drifting spray droplets, including the effects of droplet evaporation and interception by a shelterbelt. The object is for the model to capture the major features of the droplet transport, yet be simple enough to determine an analytic solution, so that the deposit on the ground may be easily calculated and the effect of parameter variations observed.

We model the droplet transport using an advection-dispersion equation, with a trapping term added to represent the shelterbelt. In order to proceed analytically, we discretise the shelterbelt by dividing it into a three-dimensional array of blocks, with the trapping in each block concentrated to the point at its centre. First, we consider the more straightforward case where the droplets do not evaporate; solutions are presented in one, two and three dimensions, along with explicit expressions for the total amount trapped and the deposit on the ground. With evaporation, the model is more difficult to solve analytically, and the solutions obtained are nestled in integral equations which are evaluated numerically. In both cases, examples are presented to show the deposition profile on the ground downwind of the shelterbelt, and the corresponding reduction in deposit from the same scenario without the shelterbelt.
Acknowledgements

I would like to sincerely thank my supervisors, Robert McKibbin and Graeme Wake, for their invaluable guidance and support during my PhD study. I could not have asked for better supervisors.

Next, I would like to thank Massey University for providing me with a three year Doctoral Scholarship, and Lincoln Ventures Ltd for generously providing additional financial support which has allowed me to attend conferences during this time.

Several people have contributed their time and knowledge, and I would like to express my gratitude to them: John-Paul Praat and Simon Woodward, formerly of Lincoln Ventures Ltd, and Alison Forster of Plant Protection Chemistry New Zealand. Special thanks also to Peter Jaques for patiently reading this thesis and providing much-appreciated feedback.

Last, but certainly not least, I would like to say a huge thank you to my family, Mum and Dad, Andrea and Damien and my grandparents, for all their love and support. Special thanks also to all of my friends, particularly my fellow PhD students who have been with me on this journey.
Contents

Abstract .. i
Acknowledgements ... ii
Contents ... iii
List of Figures ... vi
List of Tables ... viii
Notation .. ix

1 General Introduction 1
 1.1 Background and Research Motivation 1
 1.2 Literature Review .. 4
 1.3 Research Objective 6
 1.4 Methodology ... 6
 1.5 Thesis Overview ... 9

2 Preliminaries: Single Droplet Kinetics and Thermodynamics 11
 2.1 Equation of Motion ... 11
 2.2 Terminal Velocity ... 12
 2.3 Some Example Trajectories 13
 2.4 Droplet Evaporation 15
 2.5 An Example Trajectory with Evaporation 22
 2.6 Chapter Summary .. 23

3 Advection-Dispersion Model Framework 26
 3.1 Model Derivation .. 26
CONTENTS

3.2 Initial and Boundary Conditions .. 32
3.3 The Background Trapping Rate k_b 34
3.4 Parameter Values ... 36
3.5 Chapter Summary .. 38

4 A Point Representation for Trapping 40
4.1 Advection-Dispersion Model .. 41
4.2 Total Droplet Trapping and Deposition 42
4.3 Case 1: Zero Vertical Dispersion 43
4.4 Case 2: Non-Zero Vertical Dispersion 57
4.5 Chapter Summary .. 72

5 Trapping in a Discretised Shelterbelt 74
5.1 Discretising a Shelterbelt .. 74
5.2 Advection-Dispersion Model .. 76
5.3 Total Trapping in the Shelterbelt and Deposit on the Ground 76
5.4 Case 1: Zero Vertical Dispersion 78
5.5 Case 2: Non-Zero Vertical Dispersion 99
5.6 Chapter Summary .. 112

6 Trapping With Evaporation .. 115
6.1 Advection-Dispersion Model with Trapping and Evaporation 115
6.2 Total Droplet Trapping and Deposition 117
6.3 Approximations for the Mass and Settling Speed 118
6.4 Case 1: Zero Vertical Dispersion 119
6.5 Case 2: Non-Zero Vertical Dispersion 131
6.6 Partial Evaporation (Solid Core) 144
6.7 Chapter Summary .. 145

7 Thesis Summary .. 148
7.1 Summary ... 148
7.2 Analyses ... 149
7.3 Further Research .. 150
7.4 Publications ... 150
A Selected Workings

A.1 The Dispersion Tensor .. 152
A.2 A Point Representation for Trapping with \(D_V \neq 0 \) 154
A.3 A Point Representation for Trapping With Evaporation and \(D_V \neq 0 \) 159

B Laplace and Fourier Transforms

B.1 Laplace Transforms ... 164
B.2 Fourier Transforms ... 166

References ... 167
List of Figures

1.1 Spray released from an airblast sprayer ... 2
1.2 An airblast sprayer in an avocado orchard .. 2
1.3 An orchard block surrounded by a shelterbelt 3
1.4 Conceptual illustration of droplet transport .. 8

2.1 Droplet settling speed for a range of different diameters 14
2.2 Trajectory of a small droplet in an ambient wind 16
2.3 Velocity components of the droplet in Figure 2.2 16
2.4 Trajectory of a larger individual droplet in an ambient wind 17
2.5 Velocity components of the droplet in Figure 2.4 17
2.6 Ventilation coefficient for droplets falling at terminal velocity 22
2.7 Trajectory of an individual evaporating droplet in an ambient wind 23
2.8 Falling speed of the evaporating droplet in Figure 2.7 24
2.9 Diameter of the evaporating droplet in Figure 2.7 24

3.1 Theoretical profiles of the horizontal windspeed for a single row shelterbelt . 28
3.2 Values of the background trapping rate for a broadleaf shelterbelt 37
3.3 Values of the background trapping rate for a fine-needled shelterbelt 37

4.1 Conceptual illustration of trapping at a plane 44
4.2 Conceptual illustration of trapping at a line .. 47
4.3 Cross sections of the mass concentration with $D_V = 0$ and a trapping line ... 50
4.4 Cross-section of the deposit with $D_V = 0$ and a trapping line 53
4.5 Cross-section of the reduction in deposit due to the trapping line 53
4.6 Cross-section of the deposit with $D_V \neq 0$ and a trapping line 66
4.7 Cross-section of the reduction in deposit due to the line 66
4.8 Contours of the deposit with $D_V \neq 0$ and no trapping 71
4.9 Contours of the deposit with $D_V \neq 0$ and a trapping point 71
4.10 Contours of the reduction deposit due to the point ... 72

5.1 A rectangular shelterbelt discretised using a 3-D array of trapping points 75
5.2 A shelterbelt “slab” discretised using multiple trapping planes 79
5.3 Comparisons between continuous and discretised trapping with $D_V = 0$ 87
5.4 Accuracy of the discretised solution with $D_V = 0$.. 88
5.5 An infinitely long shelterbelt discretised using a 2-D array of trapping lines 88
5.6 Cross-section of the deposit with $D_V = 0$ and an array of trapping lines 96
5.7 Cross-section of the reduction deposit due to the trapping lines 96
5.8 Accuracy of the discretised solution with $D_V \neq 0$.. 104
5.9 Cross-section of the deposit with $D_V \neq 0$ and an array of trapping lines 109
5.10 Cross-section of the reduction in deposit due to the trapping lines 109
5.11 Contours of the deposit with $D_V \neq 0$ and no trapping ... 113
5.12 Contours of the deposit with $D_V \neq 0$ and an array of trapping points 113
5.13 Contours of the reduction deposit due to the trapping points 114

6.1 Actual and Stokes flow settling speeds plotted against droplet diameter 120
6.2 Illustration of the moving coordinate system .. 121
6.3 Cross-sections of the deposit with evaporation, $D_V = 0$ and a trapping line 128
6.4 Solution space in moving coordinates ... 135
6.5 Accuracy of the deposit with no evaporation and no trapping 142
6.6 Cross-section of the deposit with evaporation, $D_V \neq 0$ and a trapping line 142
6.7 Number density of deposit with partial evaporation ... 146
6.8 Mass density of deposit with partial evaporation ... 146

A.1 Mean wind velocity u in the horizontal plane .. 152
List of Tables

2.1 Droplet settling speed for a range of different diameters 14
2.2 Temperature of an evaporating droplet for various relative humidities 20
3.1 Some typical parameter values ... 38
4.1 Parameter set used to generate Figures 4.4 and 4.5 52
4.2 Parameter set used to generate Figures 4.6 and 4.7 65
4.3 Parameter set used to generate Figures 4.8, 4.9 and 4.10 70
5.1 Transformed concentration for a number of consecutive trapping planes 82
5.2 Parameter set used to generate Figures 5.6 and 5.7 95
5.3 Parameter set used to generate Figures 5.9 and 5.10 107
5.4 Parameter set used to generate Figures 5.11, 5.12 and 5.13 112
6.1 Parameter set used to generate Figure 6.3 ... 127
6.2 Parameter set used to generate Figure 6.3 ... 141
B.1 Table of Laplace transforms .. 164
B.2 Table of Fourier transforms .. 166
Notation

Upper Case

- C: Droplet number concentration [\# m$^{-3}$]
- D_L: Alongwind (longitudinal) dispersion coefficient [m2 s$^{-1}$]
- D_T: Crosswind (transverse) dispersion coefficient [m2 s$^{-1}$]
- D_V: Vertical dispersion coefficient [m2 s$^{-1}$]
- D_W: Diffusivity of water vapour in air [m2 s$^{-1}$]
- H: Release height [m]
- L_L: Dominant alongwind (longitudinal) turbulence length scale [m]
- L_T: Dominant crosswind (transverse) turbulence length scale [m]
- L_V: Dominant vertical turbulence length scale [m]
- L_v: Latent heat of vaporisation [J kg$^{-1}$]
- M_W: Molecular mass of water [kg mol$^{-1}$]
- Q: Mass release [kg]
- R: Dimensionless function non-zero only within a region of trapping [-]
- R_g: Universal gas constant [J mol$^{-1}$ K$^{-1}$]
- S: Droplet settling speed [m s$^{-1}$]
- T: Absolute temperature [K]
- X_0: release x coordinate [m]
- Y_0: release y coordinate [m]

Lower Case

- a: Droplet radius [m]
- c: Droplet mass concentration [kg m$^{-3}$]
- c_p: Specific heat of water [J kg$^{-1}$ K$^{-1}$]
- d: Droplet diameter [m]
- f_h: Ventilation coefficient for heat [-]
- f_w: Ventilation coefficient for water vapour [-]
- g: Gravitational acceleration [m s$^{-2}$]
- k_a: Thermal conductivity of moist air [W m$^{-1}$ K$^{-1}$]
- k_b: Background trapping rate [s$^{-1}$]
- k: Effective trapping rate [m3 s$^{-1}$]
- m: Droplet mass [kg]
- p: Laplace transform variable [s$^{-1}$]
- p_{sat}: Saturation pressure [Pa]
- t: Time [s]
- u: Mean wind speed (positive x direction) [m s$^{-1}$]
- x, y, z: Cartesian coordinate system [m]
Bold

\textbf{D} Dispersion tensor [m2 s$^{-1}$]
\textbf{i} Unit vector in the positive x direction [-]
\textbf{j} Unit vector in the positive y direction [-]
\textbf{k} Unit vector in the positive z direction [-]
\textbf{u} Mean wind velocity [m s$^{-1}$]
\textbf{v} Droplet velocity relative to the origin [m s$^{-1}$]

Greek

μ_a Dynamic viscosity of air [kg m$^{-1}$ s$^{-1}$]
ρ_a Air density [kg m$^{-3}$]
ρ_w Droplet density (water) [kg m$^{-3}$]
ϕ Relative humidity (expressed as a fraction) [-]
ψ Spatial Fourier transform variable [m$^{-1}$]
ω Spatial Fourier transform variable [m$^{-1}$]