Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Abstract

Nepal is rich in natural resources with a high potential for energy supply, but it is facing an energy crisis. Electricity supply is unreliable and often in short supply. LPG and kerosene are imported, and therefore expensive and less accessible. Biogas is starting to be used for cooking but only at 17% of the total potential households. Most of the fuel used for cooking in rural areas is traditional fuelwood. It takes time and hardship to collect especially for women, emits unhealthy smoke and can lead to deforestation. As an alternative, biogas, mostly methane, has good potential for cooking and heating. It can be produced in a simple plant digester by anaerobic decomposition of biodegradable organic wastes. Cattle dung and human excreta are the main feedstocks used in domestic biogas plant in Nepal. Biogas can be a highly efficient and low carbon emission fuel as it can replace the excessive use of traditional biomass and reduce the associated adverse impacts on social, health and environmental conditions. Biogas development is one of the government's priority programmes in Nepal to provide reliable, clean and low cost energy supply particularly to rural households. However, the replication of the technology is still slow. Biogas production is lower than its full capacity and cannot cover the energy demand of a typical household all year round, especially during winter. Hence, this study aims to explore the potential solution to increase domestic biogas production and use so that its benefits for energy security and environmental emission reduction can be optimised.

Both quantitative and qualitative research approach were applied. Surveys of biogas households in Nepal were conducted to collect household-level information. Key informant interviews, informal discussions and observations were undertaken to gain insight into the context of overall renewable energy technologies, the production and use of biogas technology, and constraints and opportunities for its wider replication, especially to rural poor households.

Users' socioeconomic conditions, feedstock availability, plant design and cost are the major influencing factors for biogas production. The poor households cannot afford to purchase the system, or own fewer cattle, so less dung is available to feed the plant. Others who have enough cattle for dung are also not feeding the required quantity of dung to produce biogas but use it for field manure. Hence, the plants are underperforming in terms of their technical potential mainly due to the insufficient feedstock used. Agricultural residues are easily available, but do not realise their use with dung for co-digestion to increase biogas production.
This research thus analysed the effect of co-digestion of dung with agricultural residues to increase biogas yield. The cost effectiveness of co-digestion technology is also checked out by using financial analysis. The impacts of improved biogas production on the cost of energy, energy consumption and associated greenhouse gas (GHG) emissions reduction were obtained by using the Long-range Energy Alternative Planning (LEAP) system model.

Co-digestion of dung with crop residues could improve biogas production by approximately 50-150% and would meet most of the household cooking energy demand throughout the year. The increased availability of biogas could help address strategic gender needs by utilising the saved time more than 3.2 hours/day for fuelwood collection and cooking in traditional stoves. From the cost-effective perspective, an average total annual cost of energy after co-digestion is up to 37% cheaper than the existing biogas production condition, and even up to 45% cheaper than the energy cost of non-biogas households. Furthermore, a co-digested biogas plant has the potential to reduce average annual energy consumption by 46-57 gigajoules and GHG emissions, mainly from avoiding deforestation, by 16.7-19.3 tCO₂e per household depending on region, compared to a non-biogas household.

This study, however, pointed out some important issues that are to be addressed to make this research outcome more applicable. Mainly, the design of a biogas digester should be suitable for co-digestion and the government subsidy needs to be revised accordingly to cover any potential increase in the cost of the modified plant design. The utilisation of saved time to achieve strategic gender needs can also be a priority. In summary, this study analysed all three impacts together: energy consumption; cost of energy; and corresponding GHG emissions, of co-digestion technology. This has not previously been reported in the literature. This study's findings can also be relevant to other developing countries where biogas can be a part of the solutions to provide energy security, gender equality and climate change mitigation.

The recent earthquake in Nepal (on 25/4/2015 a 7.9 magnitude earthquake devastated much of the country along with subsequent aftershocks) has left extremely adverse effects on all social, economic, environment and energy supply conditions. At the time of printing the scale of damage and loss of life is still being estimated, but this is clearly an extremely damaging event. It will take a long time and huge funds and a massive pace of infrastructure development to get the situation back to normal. Nonetheless, let’s hope this study’s outcome will also add further importance to the biogas development to uplift the current vulnerable energy supply situation in poor rural households.
Acknowledgements

First and foremost, I would like to express my overwhelming gratitude to God for giving me power and strength to struggle with many challenges to complete this work.

My sincere gratitude goes to my supervisors. I would like to greatly acknowledge my primary supervisor Professor Ralph E. H. Sims for his invaluable guidance, critical suggestions, stimulating ideas, continuous support and encouragement throughout my study period. I felt privileged to work under his supervision. Thank you for providing me the opportunity.

I am greatly indebted to Professor Stephen Haslett for his in-depth supervision, guidance and encouragement, especially on the statistical part. I heartily appreciate his prompt response and pinpointed feedback at every progress update. I am also greatly thankful to Dr Phil Murray for giving me valuable guidance and continuous support during my study. His technical support, constructive feedback and encouragement helped me a lot to get through the complex LEAP modelling. I also owe my special thanks to Dr Rochelle Stewart-Withers for her guidance that broadened my insight, especially into methodology and social issues.

My very special and sincere thanks go to those important people who have provided the required information and support during my field survey in Nepal. I am greatly thankful to BSP-Nepal for providing me the biogas data base information during the field survey. I also would like to thank the survey respondents, the women's groups, the key informants and the government representatives for their valuable time and contribution. My family and relatives deserve a big thank you for their contribution by giving me and my children love, care and support and letting me have enough time to accomplish my field work successfully and timely. I also want to thank those women who trusted me enough to share their gender and energy-related problems during the household survey. They will be the primary beneficiaries of my research findings.

I would like to express my sincere gratitude to Professor Benoit Guieysse, Professor Stephen Marsland, Ms Michele Wagner and Ms Gayle Leader, and all the staff at School of Engineering and Advanced Technology (SEAT), Massey University for their every support and encouragement. I am also thankful to the administrative, IT, Library, Graduate Research School and Printery staff for providing me with excellent IT, logistic, financial and administrative support. I also want to thank the Trust Power Tararua Windfarm Research Bursary for providing me the scholarship support every year for the last four years of my
study period. I will try to repay the value of it. I also benefited from the Three-Minute-Thesis competition, the Pecha-Kucha Talks and many local, national and international conferences that increased my insight, critical thinking and confidence in my research outcomes. Thank you for the SEAT management team, programme organisers and the participants.

More importantly, I would like to thank my beloved husband for his unconditional love, understanding and sacrifices during my study. This study would not have been possible without his great effort, patience and encouragement. The top-most appreciation and heartfelt thanks are deserved by our children Kritika and Namesh. They are the most important guys who were the witness of my every up and down throughout my four-year journey. I have found them exceptionally patient and tolerant of any less attention that I paid to them during my very stressful and busy moments. Their kind love, charming faces, understanding and time contribution are the most important source of inspiration for my hard work. I often feel very touchy when they say that they don’t want any birthday gifts, but want to get involved in my convocation soon.

My sincere thanks to all my family members: parents, parents-in-law, brothers, brothers-in-law, sisters, sisters-in-law, nieces, nephews, relatives and friends for their love, support and inspiration directly and indirectly. I must not forget to acknowledge here the special contribution of my father-in-law, Mr Hari Bhakta Adhikari, and my brothers Bishwa Nath, Sudarshan and Kedar Nath Subedi, for their invaluable love, support and encouragement at every step of my life which has made it possible to reach to this stage.

Most importantly and specifically, I would like to express my heartfelt acknowledgement to my parents, Mrs Saraswati Subedi and the late Ram Nath Subedi. Thank you mom for your most precious love to me, your effort, inspirations and everyday prayers for my successful life. My father was in his 80s when he sent me here to pursue this PhD study. Dad, I did understand how difficult the moment was when you farewelled me with your tear-filled eyes and stressful face, but I left you there and forcefully moved forward to this journey, and I will never get you back in my life. I pray, may almighty God rest your soul in eternal peace, and hope you could see your mission accomplished even from heaven. My PhD degree is dedicated to you both.

At the end of this thesis write-up the extreme effect of recent earthquake in Nepal (25/04/2015) has left the whole country in grief and still at high risk. I have lost my beloved mother-in-law, many of our relatives, friends and their families, and an absolutely shocked at this moment. May God give power to the injured and affected people to cope with this pain, big loss and further risk. My sympathy to all the victims and RIP to the departed souls.
Table of Contents

Abstract .. i
Acknowledgements.. iii
Table of Contents .. v
List of Tables .. xii
List of Figures .. xvii
List of Annexes ... xx
Abbreviations and Acronyms ... xxi

CHAPTER ONE: INTRODUCTION .. 1
1.1 Background ... 1
1.2 Problem Statement and Rationale ... 3
1.3 Research Hypothesis, Aims and Objectives ... 4
1.4 Research Approach .. 5
1.5 Structure of the Thesis ... 6

CHAPTER TWO: BIOGAS PRODUCTION, BENEFITS AND GLOBAL STATUS OF BIOGAS DEVELOPMENT .. 8
2.1 Introduction ... 8
2.2 Biogas Basics .. 8
 2.2.1 Factors affecting biogas production ... 12
 2.2.2 Types and design of domestic biogas plants .. 17
2.3 Benefits of Biogas Technology .. 21
 2.3.1 Economic benefits ... 22
 2.3.2 Social benefits .. 25
 2.3.3 Environmental benefits ... 28
2.4 Dis-benefits of Biogas .. 30
2.5 Biogas and Sustainable Development .. 30
 2.5.1 Contribution of biogas to provide energy access ... 31
 2.5.2 Contribution of biogas to provide energy security 33
2.6 Contribution of Biogas to Achieving the Millennium Development Goals (MDGs) 34
2.6.1 Eradicate extreme poverty and hunger (MDG 1) ... 35
2.6.2 Achieving universal primary education (MDG 2) ... 35
2.6.3 Promote gender equality and empower women (MDG 3) 36
2.6.4 Health benefits (MDGs 4, 5 and 6) .. 36
2.6.5 Environmental sustainability (MDG 7) ... 37

2.7 Global Status of Biogas Development... 37
2.7.1 Biogas development in OECD .. 38
2.7.2 Biogas development in African countries .. 43
2.7.3 Biogas development in Asian countries... 44

CHAPTER THREE: OVERVIEW OF NEPAL, ITS ENERGY STRUCTURE AND
BIOGAS TECHNOLOGY DEVELOPMENT 49

3.1 Introduction ... 49
3.2 General Background to Nepal ... 49
3.2.1 Geography .. 49
3.2.2 Climate ... 50
3.2.3 Administrative structure .. 52
3.2.4 Urban and rural division .. 52
3.2.5 Demography and socio-economic-cultural context 53
3.2.6 Development and gender issues .. 56

3.3 Energy Resource Base of Nepal ... 58
3.3.1 Traditional biomass energy resources... 58
3.3.2 Hydro resources ... 60
3.3.3 Fossil fuel resources ... 61
3.3.4 Other renewable energy resources ... 62

3.4 Status of Energy Consumption Patterns .. 63
3.4.1 Energy consumption by fuel type ... 64
3.4.2 Energy consumption by sector ... 67

3.5 National Plans and Policies Supporting Renewable Energy Development 69

3.6 Status of GHG Emissions in Nepal ... 70

3.7 Biogas Development in Nepal .. 73
3.7.1 History of biogas development.. 73
3.7.2 Present status of biogas production .. 74
3.7.3 National policies and institutional arrangements for biogas development.... 75
CHAPTER FOUR : RESEARCH METHODOLOGY .. 83

4.1 Introduction .. 83

4.2 Conceptual Framework ... 83

4.3 Research Process .. 85

4.4 Selection and Description of Study Area .. 86
 4.4.1 Chitwan district ... 87
 4.4.2 Lamjung district ... 88
 4.4.3 Energy use pattern in Chitwan and Lamjung .. 89

4.5 Review of Research Methods .. 91

4.6 Design Data Collection Protocol ... 93
 4.6.1 Selection of research method ... 93
 4.6.2 Selection of participants ... 94
 4.6.3 Preparation for fieldwork ... 95
 4.6.4 Sample size and sampling design ... 97

4.7 Ethical Considerations ... 99

4.8 Data Collection ... 100
 4.8.1 Household survey .. 100
 4.8.2 Interviews with key informants .. 104
 4.8.3 Observations ... 105
 4.8.4 Informal discussions ... 106
 4.8.5 Document analysis .. 107

4.9 Data Analysis and Interpretation ... 108
 4.9.1 Quantitative data analysis ... 109
 4.9.2 Qualitative data analysis to support quantitative findings 113

4.10 Quality of the Research .. 115

CHAPTER FIVE: SOCIO-ECONOMIC IMPACTS OF BIOGAS AND CHANGES
IN ENERGY USE PATTERNS .. 120

5.1 Introduction .. 120

5.2 Socio-Economic Characteristics of Biogas User Households 120
6.2 Characteristics of Available Feedstocks for Biogas Production 177
 6.2.1 Animal dung ... 179
 6.2.2 Crop residues .. 179
 6.2.3 Human excreta ... 180

6.3 Theoretical Methane Potential of Individual Feedstocks 180
 6.3.1 Elemental composition analysis method .. 181
 6.3.2 Organic composition analysis method ... 182
 6.3.3 COD stabilisation method .. 183
 6.3.4 Evaluation of methane prediction methods ... 184
 6.3.5 Effect of temperature on methane yield .. 189
 6.3.6 Relationship between methane yield and quantity of feedstock 190

6.4 Effect of Co-digestion on Methane Yield .. 191
 6.4.1 Co-digestion to balance C/N ratio ... 194
 6.4.2 Characteristics of co-digestion mixtures ... 194
 6.4.3 Theoretical methane yield from co-digestion 195
 6.4.4 Volumetric methane production ... 197

6.5 Factors Affecting Biogas Production Through Co-digestion 199
 6.5.1 Biogas plant design consideration ... 199
 6.5.2 Particle size of the co-substrates ... 200
 6.5.3 Socio-economic factors ... 201
 6.5.4 Environmental factors ... 202

CHAPTER SEVEN: FINANCIAL ASSESSMENT OF A BIOGAS SYSTEM WITH
 CO-DIGESTION OF MIXED FEEDSTOCKS ... 203

7.1 Introduction ... 203

7.2 Cost of Energy Before Biogas ... 204
 7.2.1 Cost of fuelwood .. 205
 7.2.2 Cost of other fuels .. 206

7.3 Existing Cost of Energy after Biogas ... 206
 7.3.1 Cost of biogas production ... 206
 7.3.2 Cost of additional fuels to supplement for biogas deficit 208

7.4 Estimated Cost of Energy With Purchased Dung 209
 7.4.1 Cost of biogas production ... 209
 7.4.2 Cost of conventional fuels ... 210
CHAPTER EIGHT: IMPACT OF BIOGAS ON HOUSEHOLD ENERGY
CONSUMPTION AND GHG EMISSION REDUCTION 220

8.1 Introduction .. 220
8.2 Review of Energy Demand Forecasting and GHG Emission Reduction Models.. 220
8.3 LEAP for Energy Demand and GHG Emission Analysis 225
 8.3.1 Description of the LEAP modules .. 230
 8.3.2 Time horizon ... 235
8.4 Scenario Generation ... 235
 8.4.1 Current account ... 240
 8.4.2 Reference scenario ... 241
 8.4.3 Improved production efficiency scenario ... 242
 8.4.4 Increased subsidy scenario ... 243
 8.4.5 Integrated scenario 244
8.5 Results .. 244
 8.5.1 Impact of biogas on energy consumption .. 244
 8.5.2 Impact of biogas plants on GHG emissions reduction 250
 8.5.3 Potential of GHG mitigation and carbon credit earning 259
 8.5.4 Transformation analysis .. 261
 8.5.5 Cost benefit analysis ... 263

CHAPTER NINE: DISCUSSION ... 267

9.1 Introduction .. 267
9.2 Influence of Socio-economic Characteristics on Biogas Plant Installation 267
9.3 Feedstock for Biogas Production ... 268
9.4 Impacts of Biogas on Energy Use Patterns ... 269
9.5 Gender Impacts of Biogas Production and Utilisation................................. 270
9.6 Biogas Demand and Production Deficit.. 271
9.7 Improving Biogas Production Efficiency Through Co-digestion 273
9.8 Cost-effectiveness of Biogas Production Through Co-digestion............... 275
9.9 Impact of Biogas on GHG Emissions Reduction 277

CHAPTER TEN: CONCLUSIONS AND RECOMMENDATIONS 280
10.1 Introduction.. 280
10.2 Key Findings... 280
10.3 Recommendations... 284

REFERENCES .. 287
Annexes ... 318
List of Tables

Chapter 2
Table 2.1: The average composition of biogas .. 9
Table 2.2: Energy potential of organic compounds ... 11
Table 2.3: Design parameters of a biogas plant ... 12
Table 2.4: Carbon emissions from burning of various biomass and fossil fuels 30
Table 2.5: Status of biogas resources worldwide ... 38

Chapter 3
Table 3.1: Hydropower generation potential in Nepal .. 61
Table 3.2: Energy-related indicators for Nepal ... 64
Table 3.3: Total energy consumption trends in Nepal by fuel type (PJ) 65
Table 3.4: Percentage of households by main traditional fuels used for cooking in urban and rural areas and geographic regions ... 65
Table 3.5: Trend of sectoral energy consumption in Nepal (PJ) 67
Table 3.6: National plans and policies supporting renewable energy development in Nepal over recent decades ... 69
Table 3.7: The chronology of biogas development in Nepal 73
Table 3.8: Geographical region-wise biogas potentiality and % of biogas plants constructed by 2014 ... 74
Table 3.9: Subsidy for domestic biogas plants (in NRs) 78

Chapter 4
Table 4.1: Energy sources in Chitwan and Lamjung Districts 89
Table 4.2: Total number of biogas plants installed in the study districts 90
Table 4.3: Sampling and data collection techniques ... 95
Table 4.4: List of people met with during fieldwork planning and preparation 96
Table 4.5: List of field assistants ... 97

Chapter 5
Table 5.1: District-wise distribution of family size by caste groups 122
Table 5.2: Comparison of 2011 census data and survey data on family size 123
Table 5.3: Occupation of the household members ... 124
Table 5.4: District-wise distribution of occupation by caste groups 124
Table 5.5: Landholding pattern of the surveyed households 125
Table 5.6: District-wise distribution of landholdings by caste groups ... 126
Table 5.7: Number of livestock raised in the surveyed households ... 127
Table 5.8: Comparison of number of livestock raised in Chitwan and Lamjung 128
Table 5.9: Number of households raising livestock by caste groups .. 129
Table 5.10: Distance to nearest forests and market ... 129
Table 5.11: Comparison of biogas plant size ... 131
Table 5.12: Linkage of plant size with average family size, livestock and landholding 131
Table 5.13: Correlation amongst the socio-economic variables .. 132
Table 5.14: District-wise distribution of biogas plants by plant size and their age 133
Table 5.15: No. of households experiencing lower gas production with plant age 134
Table 5.16: Average quantity of feeding material produced and fed into digester 137
Table 5.17: Average feeding materials produced and fed into the digester 138
Table 5.18: Average amount of feedstock per household by district 139
Table 5.19: Households with feeding material shortages or surplus by district 141
Table 5.20: No. of plants fed with proportion of the daily prescribed requirement 141
Table 5.21: Quantity of agricultural residues produced by a household 144
Table 5.22: Number of households producing agricultural residues 145
Table 5.23: Implications of using agricultural residues as biogas feedstock 148
Table 5.24: Number of biogas plants with technical problems in operation 149
Table 5.25: Average time allocation of a biogas household on household activities 150
Table 5.26: Average time allocation of household members by district 151
Table 5.27: Overall changes in time allocation in household activities 152
Table 5.28: Changes in time allocation after the use of biogas by district 153
Table 5.29: No. of households saving time after the use of biogas ... 153
Table 5.30: Time allocation on feeding of biogas plants ... 157
Table 5.31: Utilisation of the saved time after the installation of biogas plants 159
Table 5.32: Number of households using different energy sources for cooking 161
Table 5.33: Comparison of number of households using different energy sources for cooking between Census 2011 and the survey data ... 162
Table 5.34: Change in average energy use for cooking (except biogas) 164
Table 5.35: Energy use for lighting ... 167
Table 5.36: Comparison of energy use for lighting between the Census and survey data 168
Table 5.37: Number of households with availability of biogas .. 169
Table 5.38: Required and actual biogas stove burning time .. 169
Table 5.39: Average daily biogas demand and consumption per household 171
Table 5.40: Reasons for lower gas production .. 172
Table 5.41: Average efficiency of biogas plants in the study districts 173
Table 5.42: Performances of different size biogas plants .. 174

Chapter 6

Table 6.1: Typical characteristics of livestock dung and crop residues as feedstock. 178
Table 6.2: Elemental composition formula and BMP\textsubscript{th} of the selected feedstocks 182
Table 6.3: Measured methane yields of the selected feedstocks reported in literature .. 186
Table 6.4: Biodegradable fraction of the substrates and corrected methane yields ... 187
Table 6.5: Theoretical methane yield during summer and winter in Chitwan and Lamjung .. 190
Table 6.6: Coefficients of regression for the estimation of methane yield from buffalo dung, cattle dung and human excreta ... 191
Table 6.7: Review of methane production calculation methods at different conditions .. 192
Table 6.8: Co-digestion mixture with proportion of substrates by weight percent and characteristics of co-substrate mixtures and weighted methane yield 195
Table 6.9: Weighted theoretical methane yield and percentage increase in methane yield at different substrate mixing proportions using three different methods at STP. 196
Table 6.10: Theoretical methane yield after co-digestion during summer and winter in Chitwan and Lamjung and % increase in yield compared to the dung-only yield 197
Table 6.11: Average theoretical and corrected VMP from mono-digestion of selected feedstock during summer and winter in Chitwan and Lamjung .. 198
Table 6.12: Average weighted VMP\textsubscript{th} and VMP\textsubscript{cor} after co-digestion of crop residues with dung in different proportions during summer and winter in Chitwan and Lamjung .. 199

Chapter 7

Table 7.1: Average annual cost of energy before the use of biogas in Chitwan and Lamjung with respect to biogas plant size installed later ... 204
Table 7.2: Average annual cost of biogas by plant size in Chitwan and Lamjung...... 207
Table 7.3: Average annual quantity and cost of other fuels by plant size and district 209
Table 7.4: Average annual quantity of dung required to purchase to cover the feedstock deficit and associated costs .. 210
Table 7.5: Annual cost of biogas after co-digestion of crop residues with dung in Chitwan and Lamjung .. 212
Table 7.6: Total annual cost of energy before biogas and after biogas, biogas with purchased dung and biogas with co-digestion .. 214
Table 7.7: Quantifiable monetary benefits associated with the use of a biogas plant size in Chitwan and Lamjung (US$/year) .. 215
Table 7.8: Financial analysis of existing biogas plant operation and biogas with co-digestion of crop residues and dung ... 217

Chapter 8

Table 8.1: Result of the comparative review of the energy system model capability relative to this study ... 222
Table 8.2: Selected references to energy system model applications in the literature 224
Table 8.3: Brief description of key terms used in LEAP analysis 228
Table 8.4: Modules and subcategories to projecting for energy consumption and emissions in the LEAP model ... 229
Table 8.5: Demographic profile of Nepal for the base year 2011 as used in the Key assumptions module of LEAP ... 230
Table 8.6: Overview of policy options and assumptions for scenario development ... 237
Table 8.7: Biogas plants installation in the base year and assumption for four scenarios by 2040 (% of potential biogas households in the district/region) 240
Table 8.8: Energy intensity per year per household in the reference scenario 242
Table 8.9: Energy intensity per household in the improved production efficiency scenario (after 2018) by digester size ... 243
Table 8.10: Final energy consumption projection of potential biogas households in Chitwan and Lamjung under different scenarios for selected years (TJ) 245
Table 8.11: Final energy demand projection of biogas households in Chitwan and Lamjung under different scenarios for selected years by plant size (TJ) 247
Table 8.12: Total energy consumption projection in all potential biogas households without biogas by fuel-type (TJ) .. 249
Table 8.13: GHG emissions projection of potential biogas households in Chitwan and Lamjung by fuel-type under different scenarios for selected years (tCO₂e) 251
Table 8.14: GHG emissions projection of potential biogas households in Chitwan and Lamjung under different scenarios for selected years by plant size (tCO₂e) . 252
Table 8.15: GHG emission projection from burning of emission-intensive fuels in all the potential biogas households without biogas by fuel-type (tCO₂e) 254
Table 8.16: GHG emissions projection from forest cleared for fuelwood for selected years in the four scenarios (1,000 tCO₂e) ... 255
Table 8.17: GHG emissions projection from decomposition of dung for selected years in the four scenarios (1,000 tCO$_2$e).. 257
Table 8.18: Projection of reduction in GHG emissions from digested slurry replacing chemical fertilisers in four different scenarios... 258
Table 8.19: GHG emissions projection from methane leakage in Chitwan and Lamjung in four different scenarios (1,000 tCO$_2$e)... 259
Table 8.20: Total global warming mitigation potential of biogas plants in different scenarios including energy as well as non-energy emissions (1,000 tCO$_2$e).. 260
Table 8.21: Electricity generation requirement in the four scenarios (TJ) 262
Table 8.22: GHG emissions projections from electricity generation in the four scenarios (1,000 tonnes CO$_2$ equivalent)... 263
Table 8.23: Comparative cumulative benefits from saving on fuels and cost of avoiding GHGs (2012-2040) relative to reference scenario (million US$).. 264
Table 8.24: Demand cost projection for the four scenarios in selected years 265
Table 8.25: Externality costs of avoiding GHGs (energy-related) in two districts and regions for the four scenarios (million US$) .. 266
List of Figures

Chapter 2
Figure 2.1: Schematic diagram of biogas production .. 9
Figure 2.2: Scheme of single stage anaerobic digestion process .. 10
Figure 2.3: Feedstock composition ... 11
Figure 2.4: Schematic diagram of floating drum biogas plant ... 18
Figure 2.5: Schematic diagram of Chinese fixed dome biogas plant 19
Figure 2.6: Schematic diagram of Deenbandhu model .. 20
Figure 2.7: Schematic diagram of CEMARTEC fixed dome design 20
Figure 2.8: Schematic diagram of GGC 2047 Fixed dome biogas plant 21
Figure 2.9: Benefits of biogas technology ... 22
Figure 2.10: The energy ladder ... 32

Chapter 3
Figure 3.1: Ecological and administrative division of Nepal ... 50
Figure 3.2: The geographical position of Nepal in global temperature zone 51
Figure 3.3: Vicious circle of gender and energy poverty .. 57
Figure 3.4: Comparison of Nepal's per capita CO$_2$ emission from fuel combustion with
selected Asian countries, OECD and globally ... 71
Figure 3.5: Trend of biogas plant installation in the Terai and Hill region 75
Figure 3.6: Institutional setup of biogas programme in Nepal 77

Chapter 4
Figure 4.1: Conceptual framework: optimising biogas production for energy security . 84
Figure 4.2: Research process adapted in this study .. 86
Figure 4.3: Map of Nepal showing the two study districts .. 87
Figure 4.4: Trend of annual biogas plant installation in Lamjung and Chitwan districts 90
Figure 4.5: Data collection process and methods .. 96
Figure 4.6: A household survey in Lamjung district ... 101
Figure 4.7: (a) Field observation (b) Informal discussion with local women 106
Figure 4.8: A schematic diagram of overall project analysis .. 109
Chapter 5
Figure 5.1: Distribution of households by caste groups .. 121
Figure 5.2: Percentage of households raising livestock ... 128
Figure 5.3: Size of biogas plants installed .. 130
Figure 5.4: Number of biogas plants by year of installation .. 132
Figure 5.5: GGC-2047 model biogas stove ... 136
Figure 5.6: Livestock dung was used for making compost .. 140
Figure 5.7: Distribution of agricultural residues produced in the surveyed households ... 145
Figure 5.8: Traditional method of rice straw storage .. 146
Figure 5.9: Corn stover burnt in the field for manuring ... 146
Figure 5.10: Distribution of time allocation before and after biogas 151
Figure 5.11: Average hourly energy use pattern of a biogas household (Chitwan) ... 160
Figure 5.12: Average hourly energy use pattern of a biogas household (Lamjung) ... 160
Figure 5.13: Composition of average annual fuel share before and after the use of biogas in Chitwan and Lamjung ... 163
Figure 5.14: Fuelwood consumption pattern before and after the use of biogas 165
Figure 5.15: Traditional stove for heating (a) milk (b) livestock feed (kundo) 165
Figure 5.16: Use of fuelwood and LPG in a Lamjung household 170

Chapter 6
Figure 6.1: Measured vs theoretical methane yields after correcting for substrate biodegradability ... 188
Figure 6.2: General design sketch of (a) existing GGC-2047 biogas plant (BSP-Nepal, 2012b)(b) modified (proposed) GGC-2047 biogas plant design (P. Lamichhane, 2012) 200

Chapter 7
Figure 7.1: Comparison of average annual per unit cost of energy per household before the use of biogas and after biogas with purchased dung and co-digestion 214
Figure 7.2: Net present values of biogas plants of different size with and without subsidy, and before and after co-digestion of feedstocks 218

Chapter 8
Figure 8.1: LEAP structure and calculation flow ... 227
Figure 8.2: Example of data structure in LEAP to the left in the figure 227
Figure 8.3: LEAP framework for analysing energy consumption and GHG emission

Figure 8.4: Transformation of energy forms from primary resources to final energy...

Figure 8.5: The logic connecting the alternative scenarios to the reference scenario

Figure 8.6: Final energy demand projection of potential biogas households from all fuels in the Terai region for the four scenarios

Figure 8.7: Final energy demand projection of potential biogas households from all fuels in the Hill region for the four scenarios

Figure 8.8: Saving on total energy consumption (GJ) projection after the installation of biogas plants compared with no biogas household for the four scenarios in studied districts and two regions in 2040

Figure 8.9: GHG emissions projection from all fuels in Terai region for four scenarios

Figure 8.10: GHG emissions projection from all fuels in Hill region for the four scenarios

Figure 8.11: Reduction in predicted GHG emissions in the four scenarios compared with non-biogas case in studied districts and two regions in 2040

Figure 8.12: Biogas production requirement projections in the four scenarios

Figure 8.13: Average annual saving on total cost of energy per household in the studied districts relative to without biogas in the four scenarios in 2040
List of Annexes

Annex 1: The Ethical Reports ... 319
Annex 2: Field Visit Schedule .. 326
Annex 3: Example of Biogas User Household Database from the BSP-Nepal 327
Annex 4: List of the Sampled Households .. 328
Annex 5: Household Survey Questionnaire .. 338
Annex 6: Relevant organisations and number of key informants interviewed 348
Annex 7: Checklists for key informants interview 350
Annex 8: List of key informants interviewed 351
Annex 9: Characteristics of animal dung and agricultural residues available to use as feedstock for biogas production ... 352
Annex 10: Benefit cost analysis of the existing biogas plant operation with and without subsidy ... 354
Annex 11: Benefit cost analysis of biogas plant operation with co-digestion of crop residues with dung ... 355
Abbreviations and Acronyms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADB/N</td>
<td>Agricultural Development Bank Nepal</td>
</tr>
<tr>
<td>AEPC</td>
<td>Alternative Energy Promotion Centre</td>
</tr>
<tr>
<td>APCAEM</td>
<td>Asia and Pacific Centre for Agricultural Engineering and Machinery</td>
</tr>
<tr>
<td>APERC</td>
<td>Asia Pacific Energy Research Centre</td>
</tr>
<tr>
<td>BANZ</td>
<td>Bioenergy Association of New Zealand</td>
</tr>
<tr>
<td>BMP</td>
<td>Biochemical methane production</td>
</tr>
<tr>
<td>BSP-Nepal</td>
<td>Biogas Support Programme- Nepal</td>
</tr>
<tr>
<td>C/N</td>
<td>Carbon-Nitrogen ratio</td>
</tr>
<tr>
<td>CBS</td>
<td>Central Bureau of Statistics</td>
</tr>
<tr>
<td>CDCF</td>
<td>Community Development Carbon Fund</td>
</tr>
<tr>
<td>CDM</td>
<td>Clean Development Mechanism</td>
</tr>
<tr>
<td>CES</td>
<td>Centre for Energy Studies</td>
</tr>
<tr>
<td>CFC</td>
<td>Chlorofluorocarbon</td>
</tr>
<tr>
<td>CH$_4$</td>
<td>Methane</td>
</tr>
<tr>
<td>CO$_2$</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>CO$_2$e</td>
<td>Carbon dioxide equivalent</td>
</tr>
<tr>
<td>COD</td>
<td>Chemical Oxygen Demand</td>
</tr>
<tr>
<td>CRTN</td>
<td>Centre for Rural Technology, Nepal</td>
</tr>
<tr>
<td>CSPP</td>
<td>Climate-Smart Planning Platform</td>
</tr>
<tr>
<td>DDC</td>
<td>District Development Committee</td>
</tr>
<tr>
<td>DFRS</td>
<td>Department of Forest Research and Survey</td>
</tr>
<tr>
<td>ENPEP</td>
<td>Energy and Power Evaluation Program</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organization of the United Nations</td>
</tr>
<tr>
<td>FIRR</td>
<td>Financial Internal Rate of Return</td>
</tr>
<tr>
<td>GDI</td>
<td>Gender Development Index</td>
</tr>
<tr>
<td>GDP</td>
<td>Gross Domestic Product</td>
</tr>
<tr>
<td>GEF</td>
<td>Global Environmental Facility</td>
</tr>
<tr>
<td>GGC</td>
<td>Gobar Gas Company</td>
</tr>
<tr>
<td>GHG</td>
<td>Greenhouse gas</td>
</tr>
<tr>
<td>GJ</td>
<td>Gigajoule</td>
</tr>
<tr>
<td>GMP</td>
<td>Greenhouse Gas Mitigation Potential</td>
</tr>
<tr>
<td>GoN</td>
<td>Government of Nepal</td>
</tr>
<tr>
<td>GPOBA</td>
<td>Global Partnership for Output-Based Aid</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>GW</td>
<td>Gigawatt</td>
</tr>
<tr>
<td>GWP</td>
<td>Global Warming Potential</td>
</tr>
<tr>
<td>HDI</td>
<td>Human Development Index</td>
</tr>
<tr>
<td>HOMER</td>
<td>Hybrid Optimization Model for Electric Renewables</td>
</tr>
<tr>
<td>IDE</td>
<td>International Development Enterprises</td>
</tr>
<tr>
<td>IEA</td>
<td>International Energy Agency</td>
</tr>
<tr>
<td>IPCC</td>
<td>Intergovernmental Panel on Climate Change</td>
</tr>
<tr>
<td>IPP</td>
<td>Independent Power Producers</td>
</tr>
<tr>
<td>IRADe</td>
<td>Integrated Research and Action for Development</td>
</tr>
<tr>
<td>IUCN</td>
<td>International Union for Conservation of Nature</td>
</tr>
<tr>
<td>KfW</td>
<td>Kreditanstalt fuer Wiederaufbau</td>
</tr>
<tr>
<td>KVIC</td>
<td>Khadi Village Industries Commission</td>
</tr>
<tr>
<td>kWel</td>
<td>Kilowatt electric</td>
</tr>
<tr>
<td>kWh</td>
<td>Kilowatt hour</td>
</tr>
<tr>
<td>LAPA</td>
<td>Local Adaptation Plan for Action</td>
</tr>
<tr>
<td>LEAP</td>
<td>Long Range Energy Alternative Planning</td>
</tr>
<tr>
<td>LPG</td>
<td>Liquefied Petroleum Gas</td>
</tr>
<tr>
<td>MAED</td>
<td>Model for Analysis of Energy Demand</td>
</tr>
<tr>
<td>MARKEL</td>
<td>Market Allocation Model</td>
</tr>
<tr>
<td>MDG</td>
<td>Millennium Development Goal</td>
</tr>
<tr>
<td>MEDEE</td>
<td>Modèle d'Evolution de la Demande d'Energie</td>
</tr>
<tr>
<td>MESAP</td>
<td>Modular Energy System Analysis and Planning</td>
</tr>
<tr>
<td>MJ</td>
<td>Megajoule</td>
</tr>
<tr>
<td>MSTE</td>
<td>Ministry of Science, Technology and Environment</td>
</tr>
<tr>
<td>Mtep</td>
<td>Million tonne equivalent of petroleum</td>
</tr>
<tr>
<td>MUHEC</td>
<td>Massey University Human Ethics Committee</td>
</tr>
<tr>
<td>MW</td>
<td>Megawatt</td>
</tr>
<tr>
<td>N₂O</td>
<td>Nitrous oxide</td>
</tr>
<tr>
<td>NAMA</td>
<td>Nationally Appropriate Mitigation Actions</td>
</tr>
<tr>
<td>NAPA</td>
<td>National Adaptation Programme of Action</td>
</tr>
<tr>
<td>NEA</td>
<td>Nepal Electricity Authority</td>
</tr>
<tr>
<td>NEMS</td>
<td>National Energy Modelling System</td>
</tr>
<tr>
<td>NPC</td>
<td>National Planning Commission</td>
</tr>
<tr>
<td>NRs</td>
<td>Nepalese Rupees</td>
</tr>
<tr>
<td>OECD</td>
<td>Organisation for Economic Co-operation and Development</td>
</tr>
<tr>
<td>PASA</td>
<td>Practical Action South Africa</td>
</tr>
<tr>
<td>PJ</td>
<td>Petajoule</td>
</tr>
<tr>
<td>Acronym</td>
<td>Full Form</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>POLES</td>
<td>Perspective Outlook on Long-term Energy System</td>
</tr>
<tr>
<td>PPM</td>
<td>Parts per million</td>
</tr>
<tr>
<td>PPP</td>
<td>Purchasing power parity</td>
</tr>
<tr>
<td>PVC</td>
<td>Polyvinyl Chloride</td>
</tr>
<tr>
<td>QDA</td>
<td>Qualitative Data Analysis</td>
</tr>
<tr>
<td>REDD</td>
<td>Reducing Emission from Deforestation and forest Degradation</td>
</tr>
<tr>
<td>RETs</td>
<td>Renewable Energy Technologies</td>
</tr>
<tr>
<td>RERL</td>
<td>Renewable Energy for Rural Livelihood</td>
</tr>
<tr>
<td>RESGEN</td>
<td>Regional Energy Scenario Generator</td>
</tr>
<tr>
<td>RET</td>
<td>Renewable Energy Technology</td>
</tr>
<tr>
<td>SD</td>
<td>Sustainable Development</td>
</tr>
<tr>
<td>SDGs</td>
<td>Sustainable Development Goals</td>
</tr>
<tr>
<td>SNV</td>
<td>Netherlands Development Organisation</td>
</tr>
<tr>
<td>STP</td>
<td>Standard temperature and pressure</td>
</tr>
<tr>
<td>tCO$_2$e</td>
<td>Tonnes carbon dioxide equivalent</td>
</tr>
<tr>
<td>TJ</td>
<td>Terajoule</td>
</tr>
<tr>
<td>toe</td>
<td>Tonnes of oil equivalent</td>
</tr>
<tr>
<td>tCO$_2$e</td>
<td>Tonnes of carbon dioxide equivalent</td>
</tr>
<tr>
<td>TPES</td>
<td>Total Primary Energy Supply</td>
</tr>
<tr>
<td>TS</td>
<td>Total Solid</td>
</tr>
<tr>
<td>UMN</td>
<td>United Mission to Nepal</td>
</tr>
<tr>
<td>UN</td>
<td>United Nations</td>
</tr>
<tr>
<td>UNDP</td>
<td>United Nations Development Programme</td>
</tr>
<tr>
<td>UNEP</td>
<td>United Nations Environment Programme</td>
</tr>
<tr>
<td>UNESCO</td>
<td>United Nations Educational, Scientific and Cultural Organizations</td>
</tr>
<tr>
<td>UNFCCC</td>
<td>United Nations Framework Convention on Climate Change</td>
</tr>
<tr>
<td>US$</td>
<td>United States dollar</td>
</tr>
<tr>
<td>VDC</td>
<td>Village Development Committee</td>
</tr>
<tr>
<td>VER</td>
<td>Voluntary Emission Reduction</td>
</tr>
<tr>
<td>VFA</td>
<td>Volatile Fatty Acids</td>
</tr>
<tr>
<td>VMP</td>
<td>Volumetric Methane Production</td>
</tr>
<tr>
<td>VS</td>
<td>Volatile solid</td>
</tr>
<tr>
<td>WECS</td>
<td>Water and Energy Commission Secretariat</td>
</tr>
<tr>
<td>WEM</td>
<td>World Energy Model</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>WWF</td>
<td>World Wildlife Fund</td>
</tr>
</tbody>
</table>