Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Dietary fibres and their properties: the possibility of fibre lowering the glycaemic index of foods post extrusion.

Presented in partial fulfilment of the requirement for the degree of

MPhil in Food Science and Technology

at

Massey University, Palmerston North Campus, New Zealand.

Margaret Anne Brennan

2008
Abstract

A series of experiments were devised in order to establish the relationship between fibre addition to an extruded breakfast cereal base recipe and the physical, chemical and nutritional qualities of the breakfast cereals. A twin screw extruder was used for all experiments. Preliminary investigations using, guar gum and inulin additions, illustrated that screw configuration was important in determining the physical properties (degree of expansion, firmness and crunchiness) of the extruded products. Thus a screw configuration featuring a reverse screw and mixing zone within the barrel was selected for the larger research study.

In the extended experimental design guar gum, inulin, wheat bran, swede fibre, and hi-maize were added to a base recipe at; 5, 10 and 15 % of total dry ingredient content. A further experiment was completed to investigate the synergistic effects of adding differing fibres in combination.

Results illustrated that soluble dietary fibres (for instance guar and inulin) created a porous, less firm, but crispier breakfast cereals than the insoluble fibres, which generally produced denser, harder products. The inclusion of fibre into the extruded breakfast cereals did not affect the chemical composition of the breakfast cereal significantly ($P \leq 0.05$) when taking into account the diluting factor of adding the fibre into the base recipe. However moisture loss / retention on extrusion varied significantly ($P \leq 0.05$) between fibre combinations. Thus the moisture loss of samples containing guar or inulin were greater than those samples containing wheat bran and swede fibre. The process of extrusion did not significantly effect the amount of protein, starch or fibre in the samples when the extruded samples were compared to the control samples. Pasting properties of samples were evaluated using the Rapid Visco Analyser. This was conducted to try to determine associations between starch pasting properties (gelatinisation events) of the raw and extruded samples and the physical or nutritional quality of the products. However, the results did not show clear associations.

An in vitro analysis was conducted to determine the effect of fibre addition on starch breakdown and subsequent release of reducing sugars. Breakfast cereals which included wheat bran, guar and swede fibre all showed a reduced rate of starch degradation compared to the control ($P \leq 0.05$). These fibres appeared to inhibit the rate of enzyme degradation of starch, in effect increasing the amount of slowly digestible starch in the breakfast cereals. Cereal samples containing inulin did not show this pattern. Generally the rate of inhibition was related to the amount of fibre added to the base recipe. When used in combinations, samples containing inulin and hi-maize were not significantly different to the control in terms of reducing sugar release, whereas inclusion of guar gum significantly reduced this release.

In conclusion, the addition of selected fibres can be used effectively as a method of manipulating the starch degradation rates of extruded breakfast cereals. This has nutritional implications in terms of glycaemic index and loading of breakfast cereals. Further work is required to develop clearer associations between the events of starch gelatinisation during extrusion and the potential glycaemic response.

Acknowledgements
My thanks to Crop and Food, Palmerston North for sponsoring my studentship, Dr. John Monro for supervising my work at Crop and Food, Palmerston North, also James Woolnough for technical assistance at Crop and Food, Palmerston North. My thanks also go to my supervisors at Massey University, Dr. Inge Merts and Dr Jean Margerison for their helpful advise, to Professor Charles Brennan for the project concept and on going advice, and Garry Radford for his patience in assisting with the joys of life with an extruder.
Table of contents

Chapter 1 Introduction

1.1 The definition of dietary fibre .. 1

1.2 Physicochemical properties of dietary fibre 2

1.3 Structural aspects of dietary fibre .. 5

1.4 Hydration properties of dietary fibres .. 7

1.5 Solubility of dietary fibres ... 9

1.6 Glycaemic Index in relation to dietary fibre content and breakfast cereals 14

1.7 Extrusion processing and its impact on food quality 16

1.8 Influence of dietary fibres in breakfast cereals 19

1.9 Objectives of the present study .. 20

Chapter 2 Materials and Methods

2.1 Materials .. 21

2.2 Extrusion process parameters ... 22

2.3 Physico-chemical properties of raw base mix and extruded products 26

2.4 Determination of pasting properties 27

2.5 *In vitro* starch determination .. 27

2.6 Resistant starch determination .. 28

2.7 Reducing sugar analysis with 3,5-dinitrosalicylic acid (DNS) 28

2.8 Protein determination using the Kjeldahl Method 29

2.9 Texture analysis of extruded products 29

2.10 Total fibre determination ... 30
Chapter 3 The effect of wheat bran and guar on the physical chemical and nutritional qualities of extruded cereal products

3.1 Introduction
3.2 Materials and methods
3.3 Results
3.4 Discussion
3.5 Conclusion

Chapter 4 The effect of extruder configuration on the physico-chemical and nutritional characteristics of high ratio wheat flour samples with added bran and inulin fibre

4.1 Introduction
4.2 Materials and methods
4.3 Results
4.4 Discussion
4.5 Conclusion

Chapter 5 Effect of inclusion of soluble and insoluble fibres into extruded breakfast cereal products made with reverse screw configuration
Chapter 6 The potential synergistic effect of combining dietary fibres on the product characteristics of extruded break fast cereal

6.1 Introduction
6.2 Materials and Methods
6.3 Results
6.4 Discussions
6.5 Conclusion

Chapter7 General Discussion and Conclusion

7.1 Conclusions from the first experiment
7.2 Conclusions from the screw configuration experiment
7.3 The role of wheat bran as an ingredient in extruded breakfast products
7.4 The role of guar gum as an ingredient in extruded breakfast products
7.5 The role of inulin as an ingredient in extruded breakfast products
7.6 The role of hi-maize as an ingredient in extruded breakfast products
7.7 The role of swede as an ingredient in extruded breakfast products
7.8 Discussion of results observed
7.9 Future research

References
List of figures

1.1 Constituents of dietary fibre 2
1.2 Interaction of raw material properties, process variables and product 18
3.1 Moisture loss (%) during extrusion process 35
3.2 Protein content (dry matter basis) of raw and extruded cereal products 36
3.3 Product and bulk density values of extruded high ratio and wholemeal flour bases with guar and bran replacement 40
3.4 Expansion values of extruded high ratio and wholemeal flour bases with guar and bran replacement 42
3.5 Carbohydrate digestibility of high ratio and wholemeal flour bases with guar and bran replacement before extrusion 43
3.6 Carbohydrate digestibility of high ratio and wholemeal flour bases with guar and bran replacement before extrusion 44
4.1 Moisture content of raw and extruded samples from the reverse screw and straight screw configuration 49
4.2 Moisture loss from the reverse screw and straight screw configurations of fibre enriched breakfast cereals 50
4.3 The effect of reverse and straight screw configurations on the expansion ratio of fibre enriched breakfast cereal products 51
4.4 The effect of reverse and straight screw configurations on the product density of fibre enriched breakfast cereal products 52
4.5 The effect of reverse and straight screw configurations on the bulk density values of fibre enriched breakfast cereal products 53
4.6 The effect of reverse and straight screw configurations on the hardness of fibre enriched breakfast cereal products 56
4.7 The effect of reverse and straight screw configurations on the crispiness of fibre enriched breakfast cereal products 57

4.8 Carbohydrate digestibility of extruded bran and inulin enriched breakfast cereal products from straight and reverse screw configurations 58

5.1 Moisture content of raw and extruded fibre enriched breakfast cereals 63

5.2 Moisture loss (%) of extruded fibre enriched breakfast cereals 64

5.3 Expansion ratio of extruded fibre enriched breakfast cereals 66

5.4 Product density of extruded fibre enriched breakfast cereals 67

5.5 Bulk density of extruded fibre enriched breakfast cereals 68

5.6 Hardness of individual extruded fibre enriched breakfast cereal products 72

5.7 Crispness of individual extruded fibre enriched breakfast cereal products 74

5.8 Apparent starch content of raw and extruded fibre enriched breakfast cereal products 76

5.9 Carbohydrate digestibility of raw fibre enriched breakfast cereal products 77

5.10 Carbohydrate digestibility of extruded fibre enriched breakfast cereal products 78

5.11 Total dietary fibre content of selected fibre enriched (15%) breakfast cereal products 81

6.1 Moisture content of raw breakfast cereal bases with combinations of dietary fibres 89

6.2 Moisture loss (%) of extruded breakfast cereals with combinations of dietary fibres 90

6.3 Expansion ratio of extruded breakfast cereal products 91

6.4 Product density of extruded breakfast cereals with combinations of dietary fibres 92
6.5 Bulk density of extruded breakfast cereals with combinations of dietary fibres 93
6.6 Hardness of extruded breakfast cereals with combinations of dietary fibres 97
6.7 Crispiness of extruded breakfast cereals with combinations of dietary fibres 98
6.8 Starch content of raw and extruded breakfast cereals with combinations of dietary fibres 99
6.9 Carbohydrate digestibility of raw breakfast cereal bases with combinations of dietary fibres 100
6.10 Carbohydrate digestibility of extruded breakfast cereals with combinations of dietary fibres 101
List of tables.

1.1 Characteristics of dietary fibre and their relationship to small intestinal functions

1.2 Characteristics of dietary fibre and their relationship to large intestinal functions

1.3 Hydration characteristics of some Dietary Fibres

1.4 The effect of DFs on glycaemic and insulinaemic responses - studies in vivo and in vitro

1.5 Glycaemic index of commercially available breakfast cereals

2.1 Recipes adopted for the samples used to determine the effect of extrusion on wheat bran and guar gum using wholemeal (WM) and high ratio (HR) flours: results in Chapter 3

2.2 Recipes using wholemeal (WM) and high ratio (HR) flour as a base to determine the effect of extruder configuration (Chapter 4) and the effect of inclusion of soluble and insoluble fibres (Chapter 5)

2.3 Recipes wholemeal (WM) and high ratio (HR) flour as a base adopted for the samples used to determine any synergistic effect of combining dietary fibres

2.4 Extruder processing parameters

2.5 Torque and pressure of barrel and die during the production of samples using wholemeal (WM) and high ratio (HR) flour as a base to determine the effect of extrusion on wheat bran and guar gum, (Chapter 3)

2.6 Torque and pressure of barrel and die during the production of samples to determine the effect of straight screw extrusion

2.7 Torque and pressure of barrel and die during the production of samples to determine the effect of reverse screw extrusion
3.1 Moisture content of raw and extruded breakfast cereal products made from wholemeal (WM) and high ratio (HR) flour bases

3.2 Pasting properties of high ratio (HR) and wholemeal (WM) flour bases with guar and bran replacement before and after extrusion

4.1 The pasting properties of raw and extruded fibre enriched samples from reverse and straight screw configurations

5.1 Pasting properties for raw and extruded fibre enriched breakfast cereals

6.1 Pasting properties of raw and extruded breakfast cereals with combinations of dietary fibres
List of publications arising from this research project

