Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
The Blue Brain: Hemispheric Asymmetry in Depression as an Explanation for Working Memory Impairment

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy
In Psychology

At Massey University, Manawatu,
New Zealand

Kathryn Campbell
2015
"If you immediately know the candlelight is fire, then the meal was cooked a long time ago."
– Oma Desala

To Colin, my rock, for always helping me to see the big picture.
Abstract

Due to substantial variability in past research regarding the cognitive and neurobiological correlates of depression, the current study investigated whether taking the possible relationship between asymmetric brain activity and cognitive impairment into account would help to clarify the matter. A total of 78 participants including 36 currently depressed, 11 previously depressed, and 31 never depressed participants, completed three mood questionnaires (Beck Depression Inventory, Hamilton Depression Inventory Short-Form, and the State-Trait Anxiety Inventory), and four working memory tasks (a spatial and verbal variant of both the N-back and complex span task). All participants had their resting brain activity recorded using an electroencephalogram. It was hypothesised that depressed participants would show relatively reduced left frontal activity, since left frontal activity is linked to positive affect and approach motivation, and that participants with depression but low levels of anxiety would show reduced right parietal activity while those with high anxiety would show increased right parietal activity due to the role of the right parietal area in arousal. These hypotheses were not supported as there were no differences in asymmetry scores between the currently depressed and the never depressed groups. However, investigation of this hypothesis was hindered by the high comorbidity of anxiety and depression making it impossible to disentangle the effects of depression and anxiety on parietal activity. It was also hypothesised that participants with depression would show impaired working memory with disproportionate impairment in the verbal working memory tasks that are thought to utilise left frontal brain activity. There was no clear support for this hypothesis. In fact, there was a trend toward improved performance possibly related to increased attention to detail due to activation of stress systems signalling a potential threat in the environment. A final hypothesis was that there would be an association between different patterns of brain activity and WM impairment but no association was found. These results highlight problems with research in this field including the conceptualisation and measurement of depression and cognitive performance as well as problems distinguishing between anxiety and depression. Future research needs to address these issues.
Acknowledgements

I would like to express my heartfelt gratitude to everyone who has helped me along this journey.

First and foremost, I would like to extend a sincere thanks to my supervisors Dr Stephen Hill and Associate Professor John Podd. Their continued support, patience, and generosity in sharing their knowledge throughout this research has been invaluable.

Secondly, I would like to acknowledge the ongoing assistance of Malcolm Loudon who was instrumental in setting up the EEG systems and programming of the cognitive tasks. Thanks to Hung Ton for assisting me in obtaining access to the inventories.

A special thanks also goes to Dr Annette Henricksen for her assistance in data collection and her continued moral support.

The support from the graduate assistant and alumni group has been fantastic in providing encouragement, reminding me to maintain a balanced lifestyle during this process, and for volunteering to act as guinea-pigs during EEG pilot testing. Thanks Ann, Annette, Maria, Geneva, Steph, Mel, Ross, and Sarah.

Thanks to the Health and Disability Ethics Committee (HDEC) for providing ethical approval for this research (Reference: CEN/11/EXP/002)

Finally, without the continued support and strength of my family, friends, and my partner Colin, this thesis would never have reached completion.
Table of Contents

- **Dedication** iii
- **Abstract** v
- **Acknowledgements** vii
- **Table of Contents** ix
- **Appendix List** xiii
- **List of Tables** xv
- **List of Figures** xvii

Introduction

Chapter 1- A Brief Review of Depression

- Symptoms of Depression 3
- Subtypes of Depression 5
- Comorbidity of Anxiety and Depression 10
- Prevalence of Depression 12
- Genetics and Depression 15
- Biomarkers of Depression 17

Chapter 2- Brain Activity in Depression

- Models of Emotion 19
 - Right Hemisphere Model of Emotion 19
 - Valence Model of Emotion 22
Explanation for Cognitive Dysfunction

The Relationship between Abnormal Brain Activity and Cognitive Impairment

Aims of the Current Study

Hypotheses of the Current Study

Chapter 5- Method

Participants

Materials and Procedure

Mood Questionnaires

BDI-II

HDI-SF

STAI

Working Memory Measures

N-back Tasks

Verbal Span Task

Spatial Span Task

CST Scoring

EEG Phase

EEG Recording

Debriefing

EEG Data Analysis

Storage of Data

Ethics

Chapter 6- Results and Discussion
Hypothesis 1: Participants With Depression Will Show Relatively Reduced Left Frontal Activity Compared With Control Participants

Hypothesis 2: Depressed Participants Without Comorbid Anxiety Will Show Reduced Parietal Activity

Hypothesis 3: Depressed Participants Will Perform Worse on Working Memory Tasks Than Control Participants With Disproportionate Impairment On Verbal Working Memory Tasks Due To Reduced Left Frontal Activity

Hypothesis 4: Working Memory Performance Will Be Related to Specific Patterns of Asymmetric Brain Activity.

Supplementary Results 1: A Comparison of Depression and Anxiety Inventories

Supplementary Results 2: Relationship between Working Memory Tasks

Chapter 7- General Discussion

Summary of Key Findings
Measurement of Depression
Measurement of Working Memory
Measuring Brain Activity
Conclusions

References
List of Appendices

Appendix A- Copy of Depression History Survey .. 192
Appendix B- Supplementary Descriptive Statistics .. 193
Appendix C- Data Distributions ... 198
Appendix D- A Comparison of Data Recorded on the Two EEG Systems 203
Appendix E- Epoch Analysis ... 211
Appendix F- Distribution of Depression and Anxiety Inventory Scores 212
List of Tables

Table 1
Pearson’s Correlation Coefficients and Significance Levels for Correlations Between Depression Inventories and Medial and Lateral Frontal Asymmetry Scores

Table 2
Pearson’s Correlations between Parietal Asymmetry Score and Depression/Anxiety Inventory Scores

Table 3
Partial Correlation between Depression Inventory Scores (BDI-II, HDI-SF) and Parietal Asymmetry Scores

Table 4
Pearson’s Correlations between Depression Measures (BDI-II, HDI-SF) and Trait/State Anxiety Subscales of STAI

Table 5
Pearson’s Correlations between z-Scores of Working Memory Task Performance and Depression and Anxiety Inventories

Table 6
ANOVA Results and Effect Sizes (f) for Comparison of Working Memory Test Scores between Currently, Never, and Previously Depressed Groups

Table 7
Pearson’s Correlations between Lateral Frontal, Medial Frontal, and Parietal Asymmetry Scores, and z-Scores of Working Memory Task Performance

Table 8
Pearson’s Correlation between Lateral Frontal, Medial Frontal, and Parietal Asymmetry Scores and Sensitivity (d’) and Bias (c) for N-back Task Performance

Table 9
One-Way ANOVA Results Comparing Depressed and Control Right and Left Dominant Groups Mean z-Score Performance on Working Memory Measures

Table 10
Descriptive Statistics for Depression (BDI-II, HDI-SF) and Anxiety (State and Trait Subscales of STAI)

Table 11
Pearson’s Correlations between Depression (BDI-II, HDI-SF) and Anxiety (State and Trait Subscales of STAI)

Table 12
Pearson’s Correlations between Complex Span and N-back Measures
Table B-1
Descriptive Statistics for Asymmetry Metrics for Lateral and Medial Frontal Sites, and Parietal Site for Never, Currently, and Previously Depressed Groups

Table B-2
Descriptive Statistics for Never, Currently, and Previously Depressed Groups Split by EEG System for Both Medial and Lateral Frontal Asymmetry Scores

Table B-3
Descriptive Statistics for High and Low Anxiety Depressed Groups and Non-Depressed Group’s Parietal Asymmetry Scores When Grouped Using State or Trait Anxiety Scores

Table B-4
Descriptive Statistics for Working Memory Task Performance (z-Scores) in Currently, Never, and Previously Depressed Groups

Table B-5
z-Score Working Memory Task Descriptive Statistics for Depressed and Control Groups Subtyped by Medial Frontal Asymmetry Scores

Table B-6
z-Score Working Memory Task Descriptive Statistics for Depressed and Control Groups Subtyped by Lateral Frontal Asymmetry Scores

Table B-7
z-Score Working Memory Task Descriptive Statistics for Depressed and Control Groups Subtyped by Parietal Asymmetry Scores

Table B-8
Descriptive Statistics for Depression and Anxiety Inventories in the Never, Currently, and Previously Depressed Groups

Table D-1
Descriptive Statistics for Comparison of Neuroscan and ADI EEG Recording Systems

Table D-2
Descriptive Statistics for Comparison of Neuroscan and ADI EEG Recording Systems With Extreme Scores Removed

Table D-3
Comparison of Left and Right Dominant Asymmetry Scores for Neuroscan and ADI Recording Systems for Medial, Lateral, and Parietal Recording Sites
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Verbal N-back Task</td>
<td>79</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Spatial Span Task</td>
<td>81</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Differences in Mean Lateral Frontal Asymmetry Scores for Never, Currently, and Previously Depressed Groups with Cohen’s d Effect Sizes from Tukey Test Comparisons Indicated. Error Bars Indicate ± 1 SD.</td>
<td>89</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Differences in Mean Medial Frontal Asymmetry Scores for Never, Currently, and Previously Depressed Groups with Cohen’s d Effect Sizes from Tukey Test Comparisons Indicated. Error Bars Indicate ± 1 SD.</td>
<td>90</td>
</tr>
<tr>
<td>Figure 5</td>
<td>Differences in Mean Parietal Asymmetry Scores for High State Anxiety, Low State Anxiety, and Never Depressed Groups with Cohen’s d Effect Sizes from Tukey Test Comparisons Indicated. Error Bars Indicate ± 1 SD.</td>
<td>104</td>
</tr>
<tr>
<td>Figure 6</td>
<td>Differences in Mean Parietal Asymmetry Scores for High Trait Anxiety, Low Trait Anxiety, and Never Depressed Groups with Cohen’s d Effect Sizes from Tukey Test Comparisons Indicated. Error Bars Indicate ± 1 SD.</td>
<td>105</td>
</tr>
<tr>
<td>Figure 7</td>
<td>Mean z-Scores for Never, Previously, and Currently Depressed Groups on Working Memory Tasks (Labelled Task 1-10).</td>
<td>111</td>
</tr>
<tr>
<td>Figure 8</td>
<td>z-Score Mean z-Scores for Left and Right Dominant Subgroups Based on Medial Frontal Asymmetry Scores for Working Memory Tasks (Labelled Task 1-10).</td>
<td>121</td>
</tr>
<tr>
<td>Figure 9</td>
<td>z-Score Mean z-Scores for Left and Right Dominant Subgroups Based on Lateral Frontal Asymmetry Scores for Working Memory Tasks (Labelled Task 1-10).</td>
<td>122</td>
</tr>
<tr>
<td>Figure 10</td>
<td>z-Score Mean z-Scores for Left and Right Dominant Subgroups Based on Parietal Asymmetry Scores for Working Memory Tasks (Labelled Task 1-10).</td>
<td>123</td>
</tr>
<tr>
<td>Figure C-1</td>
<td>Distribution of Medial Frontal Asymmetry Scores in the Never, Currently, and Previously Depressed Groups</td>
<td>198</td>
</tr>
<tr>
<td>Figure C-2</td>
<td>Distribution of Lateral Frontal Asymmetry Scores in the Never, Currently, and Previously Depressed Groups</td>
<td>199</td>
</tr>
</tbody>
</table>
Figure C-3
Distribution of Parietal Asymmetry Scores in the Never, Currently, and Previously Depressed Groups

Figure C-4
Distribution of Lateral Asymmetry Scores in the Low and High Depression Groups

Figure C-5
Distribution of Medial Asymmetry Scores in the Low and High Depression Groups

Figure D-1
A Comparison of the Distribution of Parietal Asymmetry Scores Recorded on the Neuroscan and ADI EEG Recording Systems

Figure D-2
A Comparison of the Distribution of Lateral Frontal Asymmetry Scores Recorded on the Neuroscan and ADI EEG Recording Systems

Figure D-3
A Comparison of the Distribution of Medial Frontal Asymmetry Scores Recorded on the Neuroscan and ADI EEG Recording Systems.

Figure D-4
A Comparison of Season of Collection for the Neuroscan and ADI EEG Systems.

Figure E-1
Frequency Distribution of Average Percentage of Epochs Retained for EEG Data