Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Phytoextraction of Palladium and Gold
from Broken Hill Gossan
Phytoextraction of Palladium and Gold from Broken Hill Gossan

A thesis presented in partial fulfilment of the requirements for the degree of Master of Environmental Management

at Massey University, Manawatū, New Zealand

Hendra Michael Aquan
2015
Abstract

The research in this thesis was conducted as part of the Phytocat Project; a collaborative effort between University of York (UK), Yale University (USA), University of British Columbia (Canada) and Massey. The aim of the Phytocat project was to yield a target concentration of 1,000 μg g\(^{-1}\) palladium in plants, so that the plants could be used as catalysts in chemical reactions. This thesis focussed on the phytoextraction of palladium from Broken Hill gossan, a platinum group element-rich rock collected from Australia. The gossan and surrounding soil has an elevated concentration of iron, copper, nickel and precious metals.

Samples of species native to the Broken Hill gossan and the associated rhizosphere soil were collected from the field and analysed to screen natural levels of metal accumulation in plants of the area. Five native plant species were identified: *Solanum centrale* (bush tomato), *Brassica* sp, *Ptilotus obovatus* (silver tail), *Sclerolaena lanicuspis* (copper burr) and *Tetragonia moorei* (annual spinach). The copper concentration in all plant tissues had a strong relationship with copper in soil. An individual *Solanum centrale* plant recorded a copper concentration of 277 μg g\(^{-1}\) from soil with concentration of 796 μg g\(^{-1}\) suggesting that this species is a copper tolerant plant from Broken Hill. No anomalous levels of nickel were recorded in plant tissues. The average palladium concentration measured in the rhizosphere soil was 28.8 ng g\(^{-1}\). However, the five native plant species could not concentrate palladium in their biomass. Solubility of palladium was suggested to be poor in natural environment.

To study the potential of induced hyperaccumulation to increase the palladium uptake in plants, 60 kg of gossan from the field was collected, crushed and used as a plant growth medium for controlled plant trials at Massey University. Two types of gossan rock were collected, classified by the dominant form of iron oxide mineral in the rock structure: goethite dominated (soil A) and hematite dominated (soil B). The goethite material (A) has a higher total and soluble metals concentration than the hematite material.

Initial trials focused on *Brassica juncea*. However, despite germinating, this plant grew poorly on both types of gossan. Insufficient biomass was available to induce uptake of metals, and therefore only the natural levels of metal uptake in the poorly developed plants was quantified. Total harvested aerial biomass was 5.1 g from 39 pots each containing 800 g of gossan. The mean metal concentrations in plants grown in the two soils was not significantly different (p< 0.05). The concentration of palladium in the plant biomass ranged from 2,130 to 2,909 ng g\(^{-1}\). This study proposed that 1,000 ng palladium g\(^{-1}\) is a suitable hyperaccumulation
threshold level and therefore *B. juncea* on the gossan was able to hyperaccumulate palladium. The average copper concentration in the biomass was 759 \(\mu g \, g^{-1} \) and it is likely that high copper solubility in the growth substrate affected plant growth performance.

A second trial used *Cannabis sativa* (Hemp) due to recorded metal tolerance of this species. Pots were re-seeded with *C. sativa*. Hemp germinated and grew well relative to *B. juncea*. Potassium cyanide solution (50 mL of 8 g L\(^{-1}\)) was applied to each pot at the point of maximum biomass to induce the solubility of precious metals and therefore to induce hyperaccumulation. Significant metal concentration values after KCN treatment were as follows: Copper (6,726 \(\mu g \, g^{-1} \)) > nickel (184 \(\mu g \, g^{-1} \)) > palladium (62 \(\mu g \, g^{-1} \)) > gold (9 \(\mu g \, g^{-1} \)). Following established criteria values, copper, palladium, and gold hyperaccumulation was observed. The mean metal concentrations of copper, nickel, and palladium from Hemp grown in soil B were greater compared to Hemp grown in soil A and control plants (\(p < 0.05 \)). However, gold concentration between Hemp A and Hemp B was not different significantly (\(p > 0.05 \)). These results were anomalous compared to the recorded total and soluble metal concentration of the two rocks.

This study concluded that total metal in soil is not an indication for metal concentration in plant tissues. Accumulated metal in plants is a function of the concentration of soluble metal in soil that can be readily absorbed by plants. Different characteristics of the substrate (in this case iron oxide) may influence metal uptake in plants. Iron oxide minerals were identified as plant competitors for soluble metals in soil solution. In this case, goethite adsorbs more soluble metal ions than hematite and therefore plants grown on the goethite substrate accumulated less metal relative to the hematite soil despite the goethite rocks having a greater total and soluble metal concentration. Metal tolerance was also highlighted as an important factor in the induced accumulation of palladium. Palladium is often associated with copper in soils and tolerance to copper is a key factor. In this work, *Brassica juncea* was proven less tolerant to copper than *C. sativa*. The target of 1000 \(\mu g \, g^{-1} \) palladium in plants has not yet been reached but the Broken Hill gossan is highlighted as a useful substrate for ongoing work. There is good potential to test the native copper tolerant species *Solanum centrale*, for induced metal uptake in the future.
Acknowledgements

First of all, I thank to Jesus Christ, who never leave me. I am so grateful for Thy blessings day by day.

I would like to express my sincere gratitude to Associate Professor Christopher Anderson, my supervisor who involved me on the Phytocat Project, and encouraged me during the lab works and thesis writing so I can finish on time. Many thanks for your support. I also acknowledge the logistical support of the Phytocat project and the Phytocat partners for allowing me to complete the work described in this thesis.

I am grateful to Dr. Paramsothy Jeyakumar and Dr. Pilirani Pankomera for fruitful discussions and assistances on statistical data analysis, and also Mr Ian Furkert, Mr Bob Toes, Ms. Glenys Wallace, Mr. Peter Bishop, and Mr. Steve Ray who supported me during experimentation in Soil Science Lab and Plant Growth Unit.

I thank Associate Professor John Holland, Ms. Sharon Wright and Dr. Karen Hytten for your supervisions during my study time.

I acknowledge the support of Ms. Budi Susilorini (Blacksmith Institute), Mr. Ahmad Safrudin (Komite Penghapusan Bensin Bertimbel - KPBB) and Mr. Djoko Rahardjo (Duta Wacana Christian University) for their recommendations so I can get the opportunity to study at Massey University.

I thank most sincerely my fellow students, Roger Sakambari, Kibrom Berhe, Souphamith Naovalat, Eduardo Sacayon, Kwan Maitrarat, and Natalia Dziegiel for your support and help during my study.

I wish to express my thanks to the New Zealand Aid Programme, the New Zealand Government, for funding my study at Massey University.

I am also indebted to the members of the Indonesian Student Association – Palmerston North with whom I have involved in various leadership programmes besides working on academic world.

I express my warm thanks to the Indonesian Christian Fellowship (Indonesia Manawatū Utamakan Tuhan - IMUT): Pak Tedy, Mbak Monica, Pak Charly, Bu Theresa, Pak Andrew, Tante Yoyo, and all brothers and sisters. Big thanks for the prayers so I can finish my thesis.

I would like to acknowledge my father Nixon Akwan, mother Sri Indaryanti, sister Dewi Irma, and brother Ferdinand Tri, who always support and encourage me. Thanks so much for your loves and cares.

Finally, I would like to express my big thanks to my beloved one, Pauline Eta, who always support my decisions and love me unconditionally. After this we can prepare our next journey together.
Table of Contents

Abstract ... i
Acknowledgements ... iii
Table of Contents .. iv
List of Tables ... viii
List of Figures .. ix

Chapter 1 - Introduction ... 1

Chapter 2 - Literature Review ... 6
 2.1. Soil – Plant Interaction ... 6
 2.1.1. Metal accumulation in plant species ... 6
 2.1.2. Metal bioavailability .. 7
 2.1.3. Metal transport .. 7
 2.1.4. Metal sink ... 8
 2.2. Metals in plants and their relationship .. 9
 2.2.1. Metals for plant .. 9
 2.2.2. Phytotoxicity: Heavy metal effects on vegetation ... 10
 2.2.3. Heavy metal detoxification ... 11
 2.3. Metals relevant to the Phytocat Project .. 12
 2.3.1. Copper in plants ... 12
 2.3.2. Nickel in plants .. 13
 2.3.3. Gold in plants .. 14
 2.3.4. Palladium in plants ... 15
 2.4. Natural hyperaccumulation VS Induced hyperaccumulation .. 15
 2.4.1. Natural hyperaccumulation ... 15
 2.4.1.1. Copper hyperaccumulator .. 16
 2.4.1.2. Nickel hyperaccumulator ... 17
 2.4.1.3. Gold natural accumulation ... 17
 2.4.1.4. Natural accumulation of palladium ... 18
 2.4.2. Induced hyperaccumulation .. 18
 2.4.2.1. Soil Amendments ... 19
 2.4.2.2. Gold induced hyperaccumulation .. 20
 2.4.2.3. Palladium induced hyperaccumulation .. 21
 2.5. Form of palladium and gold in plants ... 22
2.6. What is Phytoextraction? .. 24
2.6.1. Phytomining .. 25
2.6.2. Plant species for phytomining .. 26
 2.6.2.1. Indian mustard (Brassica juncea) .. 26
 2.6.2.2. Hemp (Cannabis sativa) ... 27
2.7. Purpose of the current study .. 28

Chapter 3 - Materials and Methods ... 29
3.1. Introduction ... 29
3.2. Site description ... 29
3.3. Methods for metal analysis ... 30
 3.3.1. Plant sample preparation .. 31
 3.3.2. Soil sample preparation ... 31
 3.3.3. Methods for copper and nickel analyses ... 31
 3.3.4. Methods for gold and palladium analyses .. 33
3.4. Quality control .. 34
3.5. Data analysis ... 35
 3.5.1. Data calculation .. 35
 3.5.2. Statistical analysis ... 35
3.6. Total metal concentration in growth substrates .. 36

Chapter 4 - Natural metal uptake in native plants from Broken Hill .. 38
4.1. Introduction ... 38
4.2. Aim and Methodology .. 38
4.3. Metal concentration from adjacent root zone .. 41
 4.3.1. Copper and nickel concentration in soil .. 41
 4.3.2. Gold and palladium concentration in soil ... 44
4.4. Metal concentration in plant tissues .. 44
 4.4.1. Copper and nickel uptake .. 44
 4.4.2. Gold and palladium uptake .. 45
4.5. Bioaccumulation coefficient ... 46
 4.5.1. Bioaccumulation coefficient for copper and nickel uptake .. 46
 4.5.2. Bioaccumulation coefficient for gold and palladium .. 49
4.6. Copper and nickel correlation analysis .. 50
4.7. Metals mobility and its uptake in native plants ... 52
 4.7.1. Copper nickel mobility and uptake ... 52
List of Tables

Table 2.1. Concentrations of essential metals in plants ... 10
Table 2.2. Study on precious metals uptake in plant’s living tissues .. 23
Table 3.1. Methods for flame atomic absorption spectroscopy (FAAS) .. 32
Table 3.2. List of standard solutions ... 32
Table 3.3. Series of standard concentrations .. 32
Table 3.4. Methods for graphite furnace atomic absorption spectroscopy (GFAAS) 33
Table 3.5. Furnace program for gold test .. 33
Table 3.6. Furnace program for palladium test .. 34
Table 3.7. Target concentration for PTM-1a .. 34
Table 3.8. Comparison of total metal analysis .. 37
Table 3.9. Statistics analysis of metal concentrations for growth medium 37
Table 4.1. Sampling coordinates .. 39
Table 4.2. Mean concentrations of plant and its substrate .. 42
Table 4.3. Range of metal concentration in soil and plant samples ... 42
Table 4.4. Range concentration from five native plants tissues ... 45
Table 4.5. Bioaccumulation coefficient ... 47
Table 4.6. Coefficient of determination ... 50
Table 5.1. Total harvested biomass (gram dry weight) ... 58
Table 5.2. Mean metal concentration in aerial parts .. 60
Table 5.3. Metal solubility and its uptake ratio in Brassica juncea ... 63
Table 6.1. Number of Fasamo and Ferimon seeds .. 73
Table 6.2. Metal uptake in Cannabis sativa after induced hyperaccumulation treatment with KCN 8 g L\(^{-1}\) ... 79
Table 6.3. Biomass yield and metal mass per plant after KCN treatment 86
Table 6.4. Metal concentration in stem and leaf of C. sativa after induced hyperaccumulation treatment .. 86
Table 6.5. Percent extractable metal and metal uptake ratio in Hemp from two soil types 89
Table 7.1. Comparison of extractable metal from gossan substrate as factor of H\(_2\)O and KCN . 97
List of Figures

Figure 3.1. Gossan sampling location New South Wales, Australia ... 30
Figure 4.1. Sampling distribution of native plant species .. 40
Figure 4.2. Mean metal concentrations in soil for base metals and precious metals 43
Figure 4.3. Mean concentrations from 27 samples of plant for copper, nickel and gold 48
Figure 4.4. Bioaccumulation coefficients in five native plants .. 49
Figure 4.5. Plot for Cu uptake into plant’s aerial parts as a function of Cu concentration in root zone .. 51
Figure 4.6. Plot for Ni uptake into plant’s aerial parts as a function of Ni concentration in root zone .. 51
Figure 5.1. *Brassica juncea* in soil A at day 55 .. 57
Figure 5.2. *Brassica juncea* grown in soil A at day 40 after sowing 57
Figure 5.3. Copper and nickel concentration in *B. juncea* grown on two soil types 60
Figure 5.4. Palladium and gold mean concentration in *B. juncea* grown on two soil types 62
Figure 5.5. Water extractable copper and nickel from two soil types 64
Figure 5.6. Water extractable palladium and gold from two soil types 64
Figure 5.7. Ratio of metal uptake in *Brassica juncea* from two soil types 65
Figure 6.1. Mutation (circled) in *C. sativa* as metal toxicity effects 76
Figure 6.2. Chlorosis in *C. sativa* leaves .. 76
Figure 6.3. Growth appearance comparison of *C. sativa* before and after KCN treatment 77
Figure 6.4. Intoxicated male and female plants after KCN treatment 77
Figure 6.5. Mean concentration of Cu, and Ni in *Cannabis sativa* treated with KCN 8 g L⁻¹ 80
Figure 6.6. Mean concentration of Pd and Au in *C. sativa* treated with KCN 8 g L⁻¹ 80
Figure 6.7. Copper and nickel sink in *C. sativa* ... 82
Figure 6.8. Palladium and gold sink in *C. sativa* .. 84
Figure 6.9. Copper content in Fasamo and Ferimon aerial parts after induced trial 87
Figure 6.10. Ni, Au and Pd content in Fasamo and Ferimon aerial parts after induced trial 87
Figure 6.11. Metal uptake ratio under induced hyperaccumulation trial in *C. sativa* 89