Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
An Electrochemical Impedance Spectroscopy Based Nitrate Sensor for Practical Application

A Project Report Submitted in Partial Fulfillment of the Requirements For the Degree of Master of Engineering In Electrical and Electronics Engineering By Li Xie

School of Engineering and Advanced Technology Massey University Palmerston North New Zealand April 2016
Abstract

Water contamination not only affects human health, but can also damage the ecological system and the natural environment. Agriculture is the backbone of New Zealand’s economy, however the sector has been identified as a primary source of nitrate contamination in many waterways. Therefore, monitoring of water quality in agricultural areas is paramount. The contemporary measurement methodologies applied for contaminant quantification are expensive, laboratory-based and time-consuming so the development of a low-cost, convenient sensing system is required. An electrochemical impedance spectroscopy based nitrate sensing system has been developed for nitrate detection. The system is designed to measure the nitrate concentration in water is stand-alone, robust, real-time and low-cost. The microcontroller in the designed system was used to generate the excitation signal applied to the sensor; for data processing and controlling time interval for the switch on/off the automatic sample-intake pump. The data in the microcontroller is transmitted to a computer for data storage and calculation via wireless communication. As the sensor geometry used in the project is the interdigital type which is very sensitive to the temperature, therefore, the sensor was initially tested in the deionized water at variable temperatures. From the result of testing in various temperature ranges, the temperature correction factor was obtained for nitrate measurement. The calibration samples were prepared by the serial dilution of a nitrate stock solution using sodium nitrate (NaNO₃) and ammonium nitrate (NH₄NO₃) with different concentrations. The sensor was immersed in the solution to observe the impedance change at various nitrate concentrations. The experimental result showed a good linear relationship between the concentration and real part of the measured impedance and the computational model for nitrate concentration was predicted based on the experimental results achieved. The sensor was also tested in the water samples collected from different local agricultural streams, and the results were validated with the applied laboratory testing results using contemporary techniques. The experimental results showed that the sensing system is more sensitive to the lower nitrate concentrations in the surface water. The system was prototyped and applied in the field. The real-time low-cost testing system displayed its potential for the in-situ continuous nitrate monitoring in the paddocks.
Acknowledgements

I would like to express my immense gratitude to my supervisor Prof. Subhas Chandra Mukhopadhyay for his great support, encouragement and help. He kept motivating me by giving me patient guidelines, advice and pointing me in the right direction throughout the work.

I would like to express my appreciation to my co-supervisor Dr. Lucy Burkitt for her patient guidance and advice on agricultural nitrate contamination of waterways.

I also would like to express my gratitude to Dr. Asif Zia for guiding me throughout the project. I would also thank Mr. Anindya Nag, Ms. Narsin Afsarimanesh, Mr. M. Eshrat Ealahi and Mr. Weizhong Shi for their active collaborations in the project. Thanks to Massey staff members Ms. Glenys Wallace, Mr. Ian Furkert, Mrs. Ann-Marie Jackson, Mr. John Edwards, Mr. Anthony Wade, Mr. Morio Fukuoka, Mr. Ken Mercer and Mr. Collin Plaw for their technical assistance and support during my work. I also would like to thank the School of Engineering and Advanced Technology, Massey University who provided me with funds and the opportunity to pursue my Masters’ degree.

I want to pay special gratitude to my beloved parents and husband for their unconditional love and support. To my lovely and wonderful daughters Stephanie and Jamie, thanks for your patience and understandings throughout the year.
Table of Contents

Abstract ... i
Acknowledgements .. ii
Chapter 1: Introduction .. 1
 1.1 Background of Project ... 1
 1.2 Current Measurement Status .. 3
 1.2.1 Water Samples Collection ... 4
 1.2.2 Measurement System ... 5
 1.3 Aims and Objectives ... 6
 1.4 Organization of the Thesis ... 7
Chapter 2: Literature Review ... 9
 2.1 Electrochemical Impedance Spectroscopy 9
 2.2 Fiber Optic Sensor ... 10
 2.3 Electrochemical Biosensor .. 12
 2.4 Microwave Sensors ... 13
 2.5 Novel Interdigital Sensors ... 14
 2.6 Novel Electromagnetic Sensor .. 17
 2.7 Nitrate Detection Methods ... 19
 2.7.1 Electrochemical detection ... 19
 2.7.2 Ion Chromatography .. 21
 2.7.3 Flow Injection Analysis methods 22
 2.8 Market Survey ... 23
Chapter 3: Design and Development of Nitrate Sensing System 27
 3.1 Introduction .. 27
 3.2 System Overview ... 27
 3.3 Interfacing to Microcontroller .. 28
 3.4 Power Supply Circuits ... 31
 3.5 Generation of Excitation Supply of the Sensor 33
 3.6 Measurement of the Sensing Voltage 40
iv

3.7 Measurement of the Sensor Impedance.. 47
3.8 Control of Water Pump .. 49
3.9 Temperature Measurement.. 50
3.10 Data Collection and Monitoring... 51
 3.10.1 Serial Communication ... 52
 3.10.2 Wireless Communication ... 53
 3.10.3 Graphic User Interface ... 57
3.11 Conclusion.. 60

Chapter 4: Experiments, Results and Discussion... 61
4.1 Introduction ... 61
4.2 Description of the Selected Sensor... 61
4.3 Temperature Measurement.. 62
 4.3.1 Experimental Setup .. 62
 4.3.2 Results and Discussions ... 64
4.4 Humidity Experiment and Results ... 69
4.5 Experimental Results with Water... 73
 4.5.1 Preparation of Solution ... 73
 4.5.2 Results from LCR Measurement .. 75
 4.5.3 Water Solution Tested by Designed Sensing System.............................. 77
4.6 Real Water Source Sample Testing... 82
4.7 Experimental Test of Complete System.. 84
4.8 Conclusion.. 86

Chapter 5: Conclusions and Future Works ... 88
5.1 Conclusions .. 88
5.2 Future Works ... 91
References .. 93
Table of Figures

Figure 1.1.1: Median nitrate concentrations measured in groundwater (1995-2008) [7] 2
Figure 1.1.2: Summary of 10-year river condition trends reported in 2013 [8] .. 2
Figure 1.2.1: Water Sample Collection ... 4
Figure 1.2.2: Technicon AutoAnalyzer currently used in the laboratory ... 6
Figure 2.1.1: Randle’s equivalent circuit ... 10
Figure 2.5.1: Geometric structure of interdigital sensor .. 14
Figure 2.5.2: Electric field for different pitch length [49] .. 15
Figure 2.5.3: Geometry of excitation pattern for multi-sensing electrode ... 15
Figure 2.5.4: Sensor configuration (1-5-50) .. 16
Figure 2.6.1: Schematic diagram of sensor connected in parallel [63] .. 17
Figure 2.6.2: Schematic diagram of sensor connected in series [63] .. 18
Figure 2.7.2.1: Schematic diagram of Ion Chromatography Method [83] .. 21
Figure 2.7.3.1: Technicon Auto-Analyzer working diagram [87] ... 22
Figure 3.2.1: Functional Block Diagram of the Sensing System .. 27
Figure 3.3.1: Arduino Fio Board ... 28
Figure 3.3.2: The interfacing of the sensor to the microcontroller ... 30
Figure 3.3.3: Picture of the system prototype based on the microcontroller ... 30
Figure 3.3.4: Serial Communication by Arduino Fio with XBee ... 31
Figure 3.4.1: Circuit for 3.3V voltage regulator application ... 32
Figure 3.4.2: Use of 555 to generate negative voltage ... 33
Figure 3.5.1: Arrays for the hexadecimal of sinusoidal waveform ... 34
Figure 3.5.2: Timer 1 ISR code ... 36
Figure 3.5.3: PWM output .. 37
Figure 3.5.4: Bandpass filter for generating smooth sinusoidal waveform .. 38
Figure 3.5.5: Smooth sinusoidal waveform generated by combined PWM output and band pass filter ... 38
Figure 3.5.6: Pseudo-linearity between current and voltage [24] ... 39
Figure 3.5.7: Circuit for generated input signal fed into sensor .. 39
Figure 3.5.8: Input (excitation) signal applied to sensor after voltage divider 40
Figure 3.6.1: Circuit for level shifting ... 41
Figure 3.6.2: Excitation signal after shifting up .. 41
Figure 3.6.3: Circuit for processing the sensing voltage ... 42
Figure 3.6.4: Distorted sensing voltage output ... 43
Figure 3.6.5: Sensing voltage (V_{sensor}) after filtering and amplifying ... 43
Figure 3.6.6: Precision rectifier circuit ... 44
Figure 3.6.7: Output signal of half wave rectifier from V_{pos} 45
Figure 3.6.8: Output signal of full wave rectifier from $V_{inmicro}$ 45
Figure 3.6.9: Microcontroller code for ADC data collection 46
Figure 3.6.10: Microcontroller code for calculating the amplitude of voltage 46
Figure 3.7.1: Zero cross detector circuit ... 47
Figure 3.7.2: Outputs of zero cross detectors ... 48
Figure 3.7.3: Microcontroller code for capturing signals 49
Figure 3.8.1: Control circuit for pump and solenoid valve .. 49
Figure 3.8.2: Microcontroller code for controlling time interval of pump and valve 50
Figure 3.9.1: TMP36 connection .. 50
Figure 3.10: Functional block diagram for data collect ... 52
Figure 3.10.1.1: Serial communication frame formats ... 52
Figure 3.10.2.1: XBee used in the experimental system .. 54
Figure 3.10.2.2: Configuration of ZigBee coordinator ... 55
Figure 3.10.2.3: Transmit data from microcontroller to ZigBee node 56
Figure 3.10.2.4: Data received in X-CTU terminal .. 56
Figure 3.10.2.5: Description of received data .. 57
Figure 3.10.3.1: Steps for receiving sensor data ... 57
Figure 3.10.3.2: GUI Design by C# ... 58
Figure 3.10.3.3: Method for converting bytes to hexadecimal value 59
Figure 3.10.3.4: Code for converting hexadecimal value to decimal value 59
Figure 3.10.3.5: C# code for storing data in txt file ... 60
Figure 4.2.1: Uncoated sensor employed in the project .. 62
Figure 4.3.1.1: Lab setup for sensor response at different temperature 63
Figure 4.3.2.1: Nyquist plot for testing MilliQ at various temperatures 65
Figure 4.3.2.2: Real part of impedance vs. frequency in varying temperature 65
Figure 4.3.2.3: Imaginary part of impedance vs. frequency in various temperature .. 66
Figure 4.3.2.4: Relationship between the temperature and resistance part of impedance ... 67
Figure 4.3.2.5: Comparison between the actual temperature and measured temperature ... 68
Figure 4.4.1: Experiment setup for temperature and humidity measurement 69
Figure 4.4.2: Nyquist plot for testing varying humidity at 25°C 70
Figure 4.4.3: Resistance part of impedance vs. frequency in varying humidity at 25°C ... 70
Figure 4.4.4: Resistance of impedance against humidity at 25°C 71
Figure 4.4.5: Nyquist plot for testing varying humidity at 35°C 71
Lists of Tables

Table 2.7.1: Electrochemical detection summary ... 20
Table 2.8.1: Summary of Commercial Nitrate Detection Products 26
Table 3.3.1: Summary of ATmega328P ... 29
Table 3.5.1: Advantages and disadvantages of different DAC methods 34
Table 3.10.2.1: Feature of ZigBee Protocol .. 53
Table 4.3.1.1: Specification of Hioki 3522-50 LCR meter ... 64
Table 4.3.2.1: Temperature Measurement .. 66
Table 4.5.1.1: Solution Concentration test result from laboratory and dilution factor ... 75
Table 4.6.1: The compared results between the designed system and laboratory measurement (Stream samples are represented by numbers followed by S and surface runoff samples are identified by their sample name) ... 83
Research Output

Conference Proceedings

Journal Publications:

Conference Attendance:

Venue: ICST 2015, Auckland, New Zealand

Date: December 8-10, 2015

Conference Presentation

Title: Electrochemical Impedimetric Sensing of Nitrate Contamination in Water

Date: 9th December, 2015

Venue: ICST 2015, Auckland, New Zealand