Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Evolution of the Genotype-Phenotype Map

A thesis presented in partial fulfilment of the requirements for the degree of

Master of Science

In

Genetics

at Massey University, Albany, New Zealand

Michael Barnett

2016
Abstract

The relationship between genotype and phenotype, the genotype-phenotype map (GPM), not only describes the genetic and molecular underpinnings of phenotypes, but also determines their variational properties. That is, it determines how genetic variation maps to phenotypic variation. Because of this, the phenotypic consequence of a random mutation may be highly constrained by properties of the GPM. Motivated by the challenge of understanding the GPM and its effect on the course of evolutionary change I here use a bacterial model to investigate how the GPM itself evolved throughout a previously conducted experiment that selected for lineages adept at cycling between the gain and loss of a simple phenotype. The Wrinkly Spreader (WS) morphotype of *Pseudomonas fluorescens* SBW25 is distinguished from the ancestral type by overproduction of an extracellular cellulose polymer that gives it a wrinkled colony morphology and allows it to colonise the liquid surface of a broth-filled vial, a niche unavailable to the ancestral type. The genes underpinning WS have been previously identified allowing the GPM to be characterized. This formed the basis by which I could compare the GPM of those WS derived from the selection experiment and so determine what changes had occurred throughout the extensive cycling of gain and loss of WS. Suppressor analysis of the derived WS types revealed in some cases a striking difference from the ancestral WS state, including one example of a significant re-wiring of regulatory connections and an expansion of the network of genes underpinning WS. In another case a novel association with a gene encoding a fatty acid desaturase was revealed with possible implications for an unusual switching mechanism. In some derived WS the GPM remained apparently unchanged but these WS were also implicated in switching strategies. By repeatedly re-evolving the same phenotype the GPM is required to find new viable configurations and I show in this thesis that the capacity to do so is vast.
Acknowledgments

Many thanks to my supervisor Professor Paul Rainey for giving me a crazy project that made me think and my co-supervisor Dr Philippe Remigi for his guidance. Also the ever-reliable Yunhao for technical assistance when Philippe wasn’t around.

To my mum, dad and brother, thank you.

Also to the two cats in my life, Charles and Milly.
Table of Contents

0.1 Abstract II
0.2 Acknowledgments III
0.3 Table of Contents IV
0.4 Figures VII
0.5 Tables VII
0.6 Abbreviations VIII

1: Introduction 1
 1.1 Genetic architecture constrains evolution 1
 1.2 The wrinkly spreader phenotype 5
 1.2.1 Alternative pathways 6
 1.3 The evolution of multicellularity 7
 1.4 Research objectives 9

2: Methods and Materials 10
 2.1 Materials
 2.1.1 Strains list 10
 2.1.2 Plasmids 11
 2.1.3 Primers 11
 2.1.4 Antibiotics, reagents and enzymes 12
 2.1.5 Media and culture conditions 12
 2.1.6 Electrophoresis materials 13
 2.1.7 Photography and microscopy materials 13
 2.2 Methods
 2.2.1 Cellulose assay 13
2.2.2 Transposon mutagenesis
2.2.3 Cre-mediated excision of transposon
2.2.4 Tri-parental conjugation
2.2.5 Production of electro-competent cells
2.2.6 Polymerase chain reaction
2.2.7 Arbitrary primed PCR
2.2.8 Enzymatic purification
2.2.9 Strand overlap extension
2.2.10 Extraction and purification
2.2.11 Cloning and transformation
2.2.12 Allelic exchange
2.2.13 Sanger sequencing
2.2.14 Identifying gene orthologs, synteny and domain architecture
2.2.15 Additional life cycle generations

3: Results

3.0.1 Selection of candidate lines from the life cycle experiment
3.0.2 Cellulose assay

3.1 Interpreting the mutations

3.1.1 Overview of mutations

3.2 Suppressor Analysis

3.2.1 Line 17

3.2.1.1 The suppressor loci indicate no change from ancestral WS

3.2.2 Line 43

3.2.2.1 The suppressor loci indicate no change from ancestral WS
3.2.2.2 Suppressor analysis of line 43+3
3.2.3 Line 54

3.2.3.1 A previously unseen association between aws and a predicted fatty acid desaturase

3.2.3.2 The role of pflu0184

3.2.3.3 fada

3.2.3.4 The role of fadA in line 54

3.2.3.5 Fatty acid desaturases

3.2.3.6 pflu5420

3.2.3.7 pflu1555

3.2.3.8 Mutational causes of altered GPM in line 54

3.2.4 Line 57

3.2.4.1 Line 57 is underpinned by a complex architecture featuring a known negative regulator of wss

3.3 Additional life cycle generations

4: Discussion

4.1 Evolution of the GPM: a redundancy of pathways

4.2 Possible switching mechanisms

4.3 Possible switching mechanisms: line 43

4.4 Evolution of the GPM: scaffolding

4.5 Evolution of the GPM: line 57

4.6 Concluding discussion

Bibliography

Appendix
Figures

1.1 A potentially beneficial mutation is unrealised due to an associated deleterious effect 2
1.2 Modularity and pleiotropy. Diagram representing two simples GPMs 3
2.1 AP-PCR amplification of transposon-chromosome junction 16
3.1 Cellulose matrix stained with calcofluor and visualized at 60x magnification 21
3.2 Morphological features of line 17 25
3.3 Morphological features of line 43 27
3.4 Morphological features of line 54 30
3.5 Distribution of transposon inserts affecting fadA 32
3.6 Morphological features of line 57 35
3.7 The fate of line 43 throughout three extra generations of the LCE 39
3.8 The fate of line 54 throughout three extra generations of the LCE 39
3.9 The fate of line 57 throughout three extra generations of the LCE 40

Tables

2.1 Designation and genetic properties of the bacterial strains used in this study 10
2.2 Plasmids used in this study 11
2.3 Primers used in this study 11
3.1 Mutations present in each line as revealed by whole genome sequencing 23
3.2 The distribution of transposon insertions suppressing the WS phenotype in line 17 25
3.3 The distribution of transposon insertions suppressing the WS phenotype in line 43 28
3.4 Suppression loci of line 43+3 29
3.5 The distribution of transposon insertions suppressing the WS phenotype in line 54 30
3.6 The distribution of transposon insertions suppressing the WS phenotype in line 57 35
Abbreviations

GPM: genotype-phenotype map
WS: Wrinkly spreader
SM: Smooth morphology
DGC: diguanylate cyclase
PDE: phosphodiesterase
RE: Re-evolution experiment