Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
The effect of dairy herd management and milking practices on milk quality

A thesis presented in partial fulfilment of the requirements for the degree of Master of Applied Science in Agricultural Systems and Management at Massey University

Pablo Londoño Gutiérrez
1997
A mi padre, por su silencio.

A mi madre, por su insistencia, persistencia y tenacidad.

A mis hermanos, por su apoyo.

A mercha, por su cariño.

A mechas, por su fe.

A Susana, por su vida.
Abstract

A mail survey of 200 dairy farmers supplying Tasman Milk Products Ltd (TML) in northern South Island, New Zealand in July 1996 received 46 % response (92 suppliers). This study was undertaken to gauge the effect of mastitis control practices of the mastitis control (SAMM) plan on milk yield and quality in seasonal supply dairy herds. This survey was written to acquire data on the relationship between important dairy husbandry practices and the status of the milk quality of the herd. These practices included dairy hygiene and teat disinfection; diagnosis and treatment of clinical mastitis; culling; dry cow therapy; and characteristics, maintenance and repair of the milking machine. The data were analysed by the Statistic Analytical Systems (SAS®) and significant results were taken to be at $p < 0.05$.

The study showed that the production of milk solids per hectare was significantly ($p=0.002$) and negatively correlated with BSCC. 60 % of TML suppliers practiced selective teat washing before milking, and 80 % of suppliers practiced teat spraying in all cows after milking for the entire lactation. Herd testing of individual cows was practiced by 87 % of the TML respondents. Most (77 %) farmers, herd tested 2-monthly. An average 8 % of cows in respondent’s herds were diagnosed as having clinical mastitis; all such cases were treated with intramammary antibiotics. 80 % of the cows treated recovered satisfactorily and the remaining 20 % needed re-treatment. An average, 3 % of the cows in each herd were culled for clinical mastitis or high somatic cell counts. The mean Bulk (milk) somatic cell count during the 1995/96 lactation for suppliers surveyed was 217,000 cells/mL. 35 % of farmers achieved a season average BSCC less than 150,000 cells/mL and only 3 % of farms had a seasonal average of more than 400,000 cells/mL. 90 % of TML respondents practiced dry cow therapy selectively. 64 % of TML respondents used selective DCT in heifers with SCC at or below 80,000 cells/mL and in cows at or below 120,000 cells/mL which is below the levels for heifers and mature cows recommended by the SAMM plan. At 35 % of farmers achieved a seasonal average SCC of less than 150,000 cells/mL, clearly demonstrates the effort being made by local suppliers to produce high quality milk on their farms. The study revealed that these “low SCC” suppliers used similar practices of dairy husbandry and milking procedures to the remaining 75% of suppliers with BSCC above 150,000 cells/mL. A majority (45 %) ($p<0.05$) of suppliers who had a BSCC below 250,000 cells/mL, used the SAMM plan during the season. It was suggested that hygiene, detection and treatment of sites of infection with antibiotics (lactating or dry cow therapy), drying-off or culling will continue to be the main herd husbandry options for keeping SCC at an optimum level. It was evident that TML suppliers are willing to produce not only as much milk as possible, but also milk of a premium quality. It was concluded that the absence of significant detectable effects of the SAMM plan on milk yield among TML suppliers responding to this study begs the question as to whether or not the mastitis control programme affects the BSCC, hence milk yield. The current study, however, identified the progress achieved by the dairy company and its suppliers in this matter by using individual components of the mastitis control plan.

Key words: Milk quality, SAMM plan, somatic cells, Bulk somatic cell counts.
Acknowledgments

Thanks are due to my chief supervisor Warren Anderson for his support, guidance and assistance, but especially for his sense of humour and unconditional friendship throughout my studies. Mechas, Susana and I will be always more than grateful. Special thanks are also due to Dr Colin Holmes, Dr Duncan Mackenzie, Dr Ganesh Rauniyar, Dr Patrick Morel and Mrs Nicola Shadbolt who provided very important ideas, suggestions and comments to complete this project. My gratitude also goes to Nicolás López-Villalobos for his support, guidance and patience with the statistical analysis of this project.

The completion of this project could not be possible without the information, interest and assistance given by the managers and suppliers of Tasman Milk Products Ltd's who provided the data and technical support. My special thanks to Kevin McKinley and Ian Perry for all the interest, help and effort put into this project and for the opportunity to talk with them and to suppliers during our visit to Nelson, Takaka and Murchison. I am indebted to them for helping with the mail survey and for providing the company data to support the farmer survey responses.

I want to thank to Professor Warren Parker and those of the Agricultural & Horticultural Faculty staff who supported my studies with their valuable knowledge, time and assistance during the academic year. Thanks particularly to Denise Stewart and Trina Hokianga for their patience and care.

The New Zealand Department of Overseas Development Assistance Programme (NZODA) and the Ministry of Foreign Affairs and Trade are acknowledged for providing me with the opportunity to study at Massey University.

The Massey Staff Soccer Team deserves an enormous credit for the completion of this thesis. I spent two wonderful years with you guys, and more than a soccer team, you were my family. I have learned too many things from you; Mechas, Susana and I will never forget you.

Special thanks to my family and all my friends in Colombia for their support during the hard moments far away from home. Very thanks to my friends Diego Escallón and family and Luis Fernando Gutiérrez and family for their unconditional friendship.
Table of Contents

Abstract...i
Acknowledgements.. ii
Table of Contents.. iii
List of Tables.. vi
List of Figures... vii
List of Appendices.. vii

1. INTRODUCTION .. 1
 1.1. PROBLEM STATEMENT ... 2
 1.2. PROJECT PROPOSAL .. 3
 1.3. OBJECTIVES .. 3

2. LITERATURE REVIEW .. 5
 2.1. INTRODUCTION ... 5
 2.2. MASTITIS ... 6
 2.3. THE RELIABILITY OF THE SCC AS IN BULK MILK AS AN INDICATOR OF SUBCLINICAL MASTITIS ... 9
 2.4. MASTITIS CONTROL IN DAIRY COWS .. 15
 2.4.1. Elements of mastitis control ... 19
 2.4.2. Aspects of the Conventional Mastitis Control Programme: 21
 2.4.2.1. Prevention of mastitis: .. 21
 2.4.2.1.1. Reduction of bacterial contamination of the teat .. 22
 2.4.2.1.2. Preventing bacteria entering the mammary gland 22
 2.4.2.1.3. Prevention of establishment of pathogens in the mammary gland 24
 2.4.2.2. Elimination of mastitis .. 24
 2.4.2.2.1. Natural Cure ... 24
 2.4.2.2.2. Antibiotic Therapy .. 25
 2.4.2.2.3. Culling .. 28
 2.4.3. Vaccination .. 29
 2.4.4. Genetic Selection to improve resistance against mastitis 30
 2.4.4.1. Importance of Genetic Improvement for Mastitis Resistance 31
 2.4.4.2. Improved mastitis resistance through selection on Somatic Cell Score (SCS) .. 31
 2.5. THE SEASONAL APPROACH TO MANAGING MASTITIS (SAMM) PLAN 32
 2.5.1. Late lactation Period ... 33
 2.5.2. Drying-off Period .. 33
List of Tables

TABLE 2-1: EPIDEMIOLOGICAL CATEGORY FOR BACTERIA CAUSING MASTITIS (BRAMLEY, 1991). ... 8

TABLE 2-2: MAIN DIAGNOSTIC TESTS FOR SUBCLINICAL MASTITIS (KITCHEN, 1981). ... 9

TABLE 2-3: MEAN VALUES (LOG10) FOR ALL THE PARAMETERS (AND STANDARD ERROR) IN THREE MILK FRACTIONS FOR UNINFECTED AND INFECTED QUARTERS (HOLDAWAY ET AL., 1996 A). ... 12

TABLE 2-4: CATEGORISATION OF THE RISK FACTORS FOR CLINICAL MASTITIS (SCHUKKEN ET AL., 1990). ... 18

TABLE 2-5: FIVE-POINT MASTITIS CONTROL PLAN DEVELOPED BY THE NATIONAL INSTITUTE FOR RESEARCH IN DAIRYING (HILLERTON, 1996). .. 20

TABLE 2-6: AREAS OF THE FARM OPERATIONS COVERED BY AUSTRALIAN DAIRY FIRST PROJECT (DAIRY FIRST NEWS, JUNE 1996). ... 21

TABLE 2-7: PRE-MILKING TEAT PREPARATION (HAMANN, 1990). .. 24

TABLE 2-8: DECISIONS REGARDING THE PRACTICE OF DRY COW THERAPY (LIC, 1996). ... 33

TABLE 3-1: PREDICTED EQUATIONS FOR THE REGRESSION ANALYSIS. .. 45

TABLE 3-2: ALPHABETIC LIST OF SELECTED MANAGEMENT PRACTICES AND PRODUCTION CHARACTERISTICS FOR SUPPLIERS SURVEYED. .. 46

TABLE 4-1: MEAN VALUES FOR THE PRODUCTION PARAMETERS DURING THE 1995/96 SEASON ... 47

TABLE 5-1: COMPARISON OF THE PRODUCTION PARAMETERS FOR THE 1995/95 SEASON (1) 62

TABLE 5-2: TABLE OF BSCC BY BREED (P < 0.05). ... 63

TABLE 5-3: TABLE OF BSCC BY TEAT SPRAYING IN EARLY LACTATION (P = 0.009) .. 65

TABLE 5-4: TABLE OF BSCC BY TEAT SPRAYING IN MID-LACTATION (P = 0.01) .. 65

TABLE 5-5: TABLE OF BSCC BY TEAT SPRAYING IN LATE LACTATION (P = 0.001) .. 66

TABLE 5-6: BULK SOMATIC CELL COUNTS FOR EACH SEASON 1995/96. ... 72

TABLE 5-7: MACHINE RELATED MECHANISMS THAT POTENTIALLY AFFECT NEW INFECTION RATE (NICKERSON, 1992). ... 74

TABLE 5-8: USE OF THE SAMM PLAN IN AUTUMN/95 BY THE BELIEF OF THE BENEFITS OF THE SAMM PLAN FOR MILK QUALITY. ... 76

TABLE 5-9: TABLE OF BSCC (HIGHER THAN 250,000 CELLS/ML AND LOWER THAN 250,000 CELLS/ML) BY THE USE OF THE SAMM PLAN (P < 0.05). ... 77
List of Figures

FIGURE 2-1: THE DYNAMICS OF UDDER HEATH (SHEARER ET AL., 1992) .. 8
FIGURE 2-2: LOG NORMAL DISTRIBUTION FOR BULK MILK SCC (SCHUCKEN ET AL., 1992 B) 15
FIGURE 2-3: SCC DECLINE FOR INFECTED AND UNINFECTED COWS POOLED ACROSS FOUR SEASONS (LACY-HULBERT AND WOOLFORD (1996)) .. 36
FIGURE 3-1: PROPOSED RELATIONSHIPS AMONG VARIABLES FOR STATISTICAL ANALYSIS43
FIGURE 4-1: SEASONAL DISTRIBUTION OF PROTEIN AND FAT PRODUCTION (KG) FOR THE 1995/96 SEASON (INCLUDES ONLY SUPPLIERS RESPONDENTS) .. 48
FIGURE 4-2: SEASONAL DISTRIBUTION OF PROTEIN AND FAT CONCENTRATION FOR THE 1995/96 SEASON (INCLUDES ONLY SUPPLIER RESPONDENTS) .. 49
FIGURE 4-3: BREED PERCENTAGES FOR SUPPLIERS IN 1995/96 (INCLUDES ONLY SUPPLIER RESPONDENTS) .. 50
FIGURE 4-4: FREQUENCY DISTRIBUTION FOR THE MILKING PRACTICES FOR THE 1995/96 SEASON (INCLUDES ONLY SUPPLIER RESPONDENTS) .. 51
FIGURE 4-5: SEASONAL DISTRIBUTION OF THE MILK PRODUCTION (L) AND MEAN BSCC IN 1995/96 (INCLUDES ONLY SUPPLIER RESPONDENTS) .. 54
FIGURE 5-1: TASMAN MILK PRODUCTS LTD BSCC SEASONAL TREND FROM 1992/93 TO 1995/96 (PERRY, 1996) .. 59

List of Appendices

APPENDIX 1: Questionnaire .. 92
APPENDIX 2: Coding System .. 98
APPENDIX 3: Frequency distributions .. 104