
A thesis presented in partial fulfilment of the requirements for the degree of

Master of Science

in

Plant Biology

at Massey University, Palmerston North, New Zealand.

Michelle Leigh Williamson

2008
ABSTRACT

Development of sustainable practices is an important goal in agriculture. One possibility involves the development of perennial cereal crops, but the mechanisms of perenniality first need to be understood. While in annual cereals flowering structures die following seed production, in perennial grasses, perenniality is achieved by maintaining at least one shoot in a vegetative state.

There are two views on perennating tiller origin in perennial grasses: some authors suggest that all over-wintering tillers flower in spring and summer, leaving spring-initiated tillers to perennate, while others indicate that spring-initiated tillers are too immature to survive summer conditions, thereby implying that flowering must be prevented in some over-wintering tillers. An understanding of perenniality will therefore require an understanding of flowering control in these species. Temperate perennial grasses have dual induction requirements for flowering, where plants become competent to perceive inductive signals following vernalisation, and flowering is initiated by inductive photoperiods. Two hypotheses were formulated to test these models. The ‘environmental control hypothesis’ stated that all adequately vernalised perennial ryegrass tillers would flower on sufficient exposure to inductive photoperiods. Alternatively, the ‘spatial control hypothesis’ stated that in addition to the environmental mechanisms, a spatial control mechanism acts to regulate flowering. Two experiments were conducted to test these hypotheses.

Perennial ryegrass and Italian (annual) ryegrass were induced to flower and differences between the annual and perennial habits at flowering time were observed. However neither hypothesis was proven. In the second experiment, flowering was studied in detail in individual tillers of perennial ryegrass. The eldest tiller flowered in all flowering plants. The second eldest tiller did not flower in 72% of plants with more than one reproductive tiller, while the third eldest tiller flowered in 94% of these plants. These data favour the spatial control hypothesis which suggests that a spatial regulatory mechanism might act to repress flowering in some competent perennial ryegrass tillers. These results were supported by studies of meristem morphology and by a preliminary gene expression study. Maintenance of older, established tillers in a vegetative state might allow the perennial plant a greater chance of survival during summer.
ACKNOWLEDGEMENTS

I would like to gratefully acknowledge my supervisors, Professor Paula Jameson (University of Canterbury, formerly at Massey University), and Dr Warren Williams (AgResearch, Palmerston North). Thank you very much for your support, encouragement and most of all your patience.

I would especially like to thank Tash Forester (AgResearch) for assistance, information, discussion and encouragement. Thanks to AgResearch staff, including Nena Alvarez, Milan Gagic, Lorna McGibbon, Alicia Scott and Igor Kardailsky, for training and assistance with the molecular aspects of this project. Thanks to Janet Clouston in the AgResearch library, and Zaneta Park for help with Statistics.

Thanks to Tash and Milan for PCR primers, and Igor for seeds.

Thanks to Rod Thomas, Chris Jones and Zane Webber for lively discussion.

Thanks to my husband Tore, especially for providing IT support 24 hours a day, and to Heather, Cuba, Flint and Holly for providing entertainment.

And thanks to all of my family and friends, of which, my nephew Matthew was clearly the most supportive. When Matthew was about 9 years old, the following conversation took place:

MATTHEW: Aunty Mush is going to be famous. She’s writing a book.

MATTHEW’S GRANDMA: Do you know what the book is about?

MATTHEW: No.

MATTHEW’S GRANDMA: Grass. How many people are going to want to read that?

MATTHEW: Oh. (Somewhat disappointed)
Table of Contents

ABSTRACT ... ii

ACKNOWLEDGEMENTS ... iii

TABLE OF CONTENTS ... iv

LIST OF FIGURES ... vi

LIST OF TABLES .. vi

ABBREVIATIONS ... vii

Chapter 1. Introduction .. 1

1.1. Sustainable agriculture .. 1

1.2. Floral induction in grasses ... 2

 1.2.1 Vernalisation ... 3

 1.2.2 Photoperiodic induction of flowering .. 11

1.3. Perennial ryegrass growth and development ... 14

1.4. Perennial mechanisms in the grasses .. 16

1.5. Aims of this thesis ... 17

Chapter 2. Materials and Methods .. 19

2.1. Experiment I ... 19

 2.1.1 Ryegrass varieties ... 19

 2.1.2 Conditions used for plant growth .. 19

 2.1.3 Vernalisation and photoperiod treatments .. 21

 2.1.4 Sample collection and analysis .. 22

 2.1.5 Statistical analysis .. 24

2.2. Experiment II ... 24

 2.2.1 Ryegrass varieties ... 24

 2.2.2 Conditions used for plant growth .. 25

 2.2.3 Vernalisation and photoperiod treatments .. 25

 2.2.4 Sample collections and analysis ... 26

 2.2.5 Statistical analysis .. 29
Chapter 3. Results ...30

3.1. Experiment I .. 30

3.1.1 Introduction .. 30
3.1.2 Fresh dissections of main tillers of perennial and Italian ryegrass30
3.1.3 Tillering in perennial and Italian ryegrass ..33
3.1.4 Meristem morphology in fixed and stained sections ...34
3.1.5 Flowering in perennial and Italian ryegrass ..35

3.2. Experiment II .. 37

3.2.1 Introduction ..37
3.2.2 Meristem morphology in perennial ryegrass ...37
3.2.3 Flowering in vernalised ‘Samson’ and ‘Impact’ perennial ryegrass37
3.2.4 Vegetative development of primary tillers ...48
3.2.5 \textit{LpFT3} and \textit{LpMADS3} gene expression in ‘Samson’ perennial ryegrass51

Chapter 4. Discussion ... 53

4.1.1 Experimental design ... 53
4.1.2 Flowering ...57
4.1.3 Meristem morphology ..59
4.1.4 Molecular analyses ..61
4.1.5 Concluding remarks ...63
4.1.6 Future work ..64

BIBLIOGRAPHY ... viii

APPENDICES .. xxi

Appendix A Daylength and civil daylength during natural LD exposure xxii
Appendix B Daily rainfall, maximum and minimum temperatures, and hours of sunlight in Palmerston North .. xxii
Appendix C Sample collection dates for Samson Treatment 1 .. xxiii
Appendix D Sample collection dates for Impact Treatment 1 .. xxiv
Appendix E Sample collection dates for Samson and Impact Treatment 2 xxv
Appendix F Sample collection dates for Samson and Impact Treatment 3 xxv
LIST OF FIGURES

Figure 1.1 Four main flowering pathways in *Arabidopsis* ..4
Figure 1.2 Regulation of *FLC* in *Arabidopsis* ..6
Figure 1.3 Vernalisation response in temperate grasses ...9
Figure 1.4 Simplified model of photoperiodic induction of *CO* by the circadian clock13
Figure 1.5 Structure of a grass plant ..15
Figure 3.1 Floral progression in the apical meristem of perennial ryegrass31
Figure 3.2 Floral progression in the apical meristem of Italian ryegrass ..32
Figure 3.3 Tiller fate in a vernalised perennial ryegrass plant exposed to 15 LDs35
Figure 3.4 Flowering in perennial and Italian ryegrass after exposure to 58 LDs, l-r: Perennial ryegrass vernalised for 52 d, 33 d and 0 d, and Italian ryegrass vernalised for 52 d and 0 d36
Figure 3.5 Stages of meristem development in perennial ryegrass ...38
Figure 3.6 Number of reproductive tillers per plant in ‘Samson’ (above) and ‘Impact’ (below) perennial ryegrass ...49
Figure 3.7 mRNA expression of *LpFT3* and *LpMADS3* in ‘Samson’ perennial ryegrass52

LIST OF TABLES

Table 1.1 *Arabidopsis* vernalisation genes and encoded proteins, and their putative counterparts in the grasses ..10
Table 2.1 Ryegrass lines used in Experiments I and II ..19
Table 2.2 Palmerston North climate daily means ...20
Table 2.3 Timeline for Experiment I ..21
Table 2.4 Fate of perennial and Italian ryegrass plants germinated in Experiment I22
Table 2.5 Protocol for wax-embedding of meristem shoots ...23
Table 2.6 Protocol for Johansen’s safranin-O and fast green stain ...24
Table 2.7 Timeline for Experiment II ..26
Table 2.8 Fate of perennial ryegrass plants germinated in Experiment II27
Table 2.9 Tillers of Samson plants used in determination of mRNA expression28
Table 2.10 Primers used for RT-PCR ...29
Table 3.1 Meristem morphology in perennial and Italian ryegrass ...33
Table 3.2 Tillers per plant in perennial and Italian ryegrass ..34
Table 3.3 Flowering in perennial and Italian ryegrass exposed to LDs ..37
Table 3.4 Meristem morphology in Samson perennial ryegrass ...45
Table 3.5 Meristem morphology in Impact perennial ryegrass ..46
Table 3.6 Pattern of flowering in Samson and Impact perennial ryegrass47
Table 3.7 Distribution of reproductive tillers in perennial ryegrass ..48
Table 3.8 Tillering in Samson and Impact perennial ryegrass ..50
ABBREVIATIONS

API APETALA 1
CO CONSTANS
FLC FLOWERING LOCUS C
FT FLOWERING LOCUS T
LD long day
LpFT3 Lolium perenne FLOWERING LOCUS T 3
LpGAPDH Lolium perenne GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE
LpMADS3 Lolium perenne MADS 3
NISD non-inductive short day
PCR Polymerase chain reaction
PPF photosynthetic photon flux
PRC2 Polycomb group Repressor Complex 2
RT-PCR Reverse transcription-polymerase chain reaction
SD short day
SOC1 SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1
VIN3 VERNALIZATION INSENSITIVE 3
VRN1 VERNALIZATION 1
VRN2 VERNALIZATION 2
VRN3 VERNALIZATION 3