Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
FRACTIONATION OF MILK PROTEINS FROM SKIM MILK USING MICROFILTRATION

A THESIS PRESENTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF TECHNOLOGY IN FOOD TECHNOLOGY AT MASSEY UNIVERSITY

SHEN JIAN
1994
ABSTRACT

The possibility of fractionation of milk proteins from skim milk using microfiltration (MF) was investigated in this project. Pilot scale ultrafiltration/microfiltration equipment (Koch model) was used. Three available MF membranes, 600, 601 and 603, with pore sizes of 1.99µ, 0.85µ and 0.17µ, respectively, were evaluated. The most suitable membrane was found to be MF 603.

By microfiltration to concentration factor (CFc) 7, permeation of 46% non-casein nitrogen (NCN) was achieved in contrast to 1% for casein. Using diafiltration with deionised water to a CF 567, permeation of 80% NCN occurred. Therefore, it is possible to obtain a casein-enriched fraction from the MF retentate and a non-casein nitrogen enriched fraction from the permeate by the MF process using MF membrane 603.
ACKNOWLEDGMENTS

I would like to express my sincere thanks to my supervisors, Mr Rod Bennett and Dr Harjinder Singh for their guidance, advice, encouragement throughout this project. They have enabled me to gain an understanding of milk protein chemistry, fractionation using membrane technique that give me a wide overview and will greatly aid me in future work.

I would like to thank Mrs Margaret Bewly for her help in providing valuable assistance during the protein analysis of samples; Mr Mike Conlon, Mr Hank Van Til and Mr Allister Young for their help in obtaining milk and Mr Byron Mckillop for his help for setting up the Koch UF/MF equipment.

I would like to thank Mr Ranjan Sharma for his help in preparing and scanning of SDS-PAGE.

My thanks also extend to the all staff and post-graduate students not named here in the Food Technology Department of Massey University for their help and friendship.

Finally, I would like to express my special thanks to my husband, Gan Li-guo, for his love, encouragement, support and help throughout the project, and to my son and my sister for their understanding, patient and some typing work, and to my father, mother, brother and the whole family for their understanding and moral support.
<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
</tr>
<tr>
<td>Acknowledgments ...</td>
</tr>
<tr>
<td>Table of contents ...</td>
</tr>
<tr>
<td>List of Figures ...</td>
</tr>
<tr>
<td>List of Tables ...</td>
</tr>
</tbody>
</table>

Chapter 1 Introduction .. 1

Chapter 2 Literature Review ... 2
 2.1 UF/MF Membrane Technology 2
 2.2 Milk Protein Fractionation .. 28
 2.3 Functional Properties of Different Milk Protein Fractions by UF/MF ... 35

Chapter 3 Experimental .. 37
 3.1 The Pilot Ultrafiltration Equipment 37
 3.2 Microfiltration/Diafiltration Process 38
 3.3 Sample Collection during the Process 41
 3.4 Sample Analysis .. 42

Chapter 4 Preliminary Experiments: Selection of Operating Parameters and Membranes 45
 4.1 Selection of Operating Parameters 45
 4.2 Selection of Membranes ... 51

Chapter 5 Fractionation of Milk Proteins Using Membrane 603 57
 5.1 Microfiltration Process ... 57
 5.2 Effect of Microfiltration and Diafiltration Processes 64
 5.3 Effect of MF and DF with Membrane Cleaning between Each Run on the Permeation (%) of NCN 71
 5.4 Effect of MF and Double DF on the Permeation (%) of NCN 72
 5.5 Gel Electrophoresis Analysis .. 73
Chapter 6 Conclusions and Recommendations ... 78
 6.1 Conclusions ... 78
 6.2 Recommendations ... 80

Appendices ... 81
Appendix I. UF/MF Terms and Expressions .. 81
Appendix II. Procedure for Koch UF Equipment Cleaning 83
Appendix III. Procedure for Micro-Kjeldahl Protein Analysis 86
Appendix IV. Procedure for SDS-PAGE Preparation 88
Appendix V. Procedure for Native-PAGE Preparation 92
Appendix VI. Procedure for Lactose Analysis .. 93
Appendix VII. Procedure for Total Solids Analysis 94
Appendix VIII. Calculation Equations ... 95

Bibliography .. 101
LIST OF FIGURES

Fig. 1 Principles of microfiltration and ultrafiltration .. 4
Fig. 2 Schematic drawing of a single module design ... 7
Fig. 3 Schematic drawing of a plate-and-frame module .. 8
Fig. 4 Schematic drawing of a spiral-wound module ... 8
Fig. 5 Schematic drawing of a tubular module .. 9
Fig. 6 Schematic drawing of a hollow fibre module ... 9
Fig. 7 Concentration polarisation-collection of solids near the membrane where the permeate is extracted ... 11
Fig. 8 Individual whey protein separation ... 33
Fig. 9 Scheme for the fractionation of whey proteins .. 34
Fig. 10 Koch UF/MF equipment ... 37
Fig. 11 Schematic diagram of the Koch UF/MF equipment ... 38
Fig. 12 Schematic drawing of diafiltration arrangement ... 39
Fig. 13 Effect of temperature on the flux of skim milk ... 46
Fig. 14 Effect of pressure difference on the flux of skim milk 47
Fig. 15 Effect of microfiltration time on the flux of skim milk 48
Fig. 16 Effect of concentration factor on the flux of skim milk 49
Fig. 17 SDS-PAGE patterns of the retentate samples from skim milk microfiltration process using membrane 600 ... 54
Fig. 18 SDS-PAGE patterns of the permeate samples from skim milk microfiltration process using membrane 600 ... 55
Fig. 19 Effect of CFc on the retention coefficient of total N with membrane 603 58
Fig. 20 Effect of CFc on the retention coefficient of NCN with membrane 603 59
Fig. 21 Effect of CFc on the retention coefficient of CN with membrane 603 60
Fig. 22 Effect of CFc on the permeation (%) of NCN with membrane 603 61
Fig. 23 Effect of CFc on the change in CN/NCN ratio in the retentates with membrane 603 ... 62
Fig. 24 Effect of CF on the permeation (%) of lactose .. 63
Fig. 25 Effect of CF on the change in total solids (%) in the retentates
during MF and three DF processes using membrane 603................................. 69
Fig. 26 Native-PAGE patterns of the retentate samples from skim milk
microfiltration and three diafiltration processes using membrane 603 70
Fig. 27 SDS-PAGE patterns of the permeate and retentate samples
from the microfiltration process using membrane 603................................. 74
Fig. 28 SDS-PAGE patterns of the retentate samples from the microfiltration
and diafiltration processes using membrane 603.. 76
LIST OF TABLES

Table 1 Differences between microfiltration and ultrafiltration .. 3
Table 2 Important properties of ultrafiltration membranes .. 6
Table 3 Qualitative comparison of various membrane configurations 10
Table 4 Functional properties of β-casein-enriched and αs/κ-casein-enriched fractions 35
Table 5 Summary of selected operating parameters .. 51
Table 6 Composition of milk proteins and their molecular sizes .. 51
Table 7 Membranes available in the pilot plant ... 52
Table 8 Comparison of the results using three available MF membranes 53
Table 9 Retention coefficients of different proteins (TN, WP, CN and β-Lg) and NPN by the MF and DF with salt solution or water ... 65
Table 10 Permeation (%) of NCN by the MF and DF with salt solution or water 66
Table 11 The effect of MF and DF processes on the ratios of CN/NCN and CN/β-Lg in the retentates ... 67
Table 12 Comparison of the effect of MF and DF processes with and without membrane cleaning on the permeation (%) of NCN ... 72
Table 13 Comparison of the effect of MF and double DF processes on the permeation (%) of NCN ... 73