Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
THE DEVELOPMENT OF INSECTICIDAL BAITS

FOR THE CONTROL OF PORINA (Wiseana Spp.)

A thesis

submitted in the partial fulfilment of the

requirements for the Degree of

Master of Science in Zoology

at Massey University

by

Neville Alexander Haack

Massey University

1982
Porina (*Wiseana* spp) damage in the field (left) and a porina caterpillar in its subterranean burrow (right).
ABSTRACT

Investigations in the development of chipped wheat baits for porina control were carried out in the laboratory and the field. In the laboratory porina readily accepted untreated chipped wheat in the presence of white clover (Trifolium repens L.) or perennial ryegrass (Lolium perenne L.). They also accepted equally, three different sizes of wheat baits, and fed at temperatures between -2°C and 25°C. Porina accepted insecticidally treated baits in the presence of untreated wheat or white clover, however did not readily accept fungus (Metarrhizium anisopliae (Metsch.) Sorok.), infected wheat in the presence of the latter two foods. Baits were removed by porina from around their burrow mouths when applied to the surface of turfs held under controlled conditions. The number of baits removed per active porina was related to the density applied.

Field trials demonstrated that insecticidally treated baits, of the smallest size (528 chips/g. dry weight), being the most cost-efficient, gave comparable mortalities to conventional spray applications. After 10 days fenitrothion spray (0.9 Kg ai/ha) gave 95% control of porina populations, and with fenitrothion treated baits (0.13 Kg ai/ha) applied at 1 chip/6.25 cm² the control achieved was 83%. At a lower bait density (1 chip/25 cm²) a significant increase in mortality was seen between 10 and 30 days. The addition of a molluscicide onto a treated bait increased its efficiency by 10%. Applying baits infected with the fungus Metarrhizium resulted in 53% mortality of porina.

The optimal bait density was shown to be one wheat chip/12.5 cm², and the optimal dosage of fenitrothion 0.4% ai/g. dry weight of wheat. The cost of bait treatment, including application costs, for porina control was $15/ha, compared to $46/ha for spraying.
ACKNOWLEDGEMENTS

I wish to thank my Supervisor, Professor B. P. Springett, of the Botany and Zoology Department, Massey University, for his diligent advice and encouragement, and for the correction of the manuscript. The use of departmental facilities, office space, and technical advice was appreciated.

I also acknowledge the expert guidance and encouragement received from Dr W. M. Kain and his research team of the Ministry of Agriculture and Fisheries (MAF), Palmerston North. Dr Kain’s original ideas instigated the conception of this joint venture Thesis; and the use of facilities and equipment belonging to the Ministry was invaluable throughout these studies.

Appreciation is expressed to Dr G. C. M. Latch of the Department of Scientific and Industrial Research (DSIR) Palmerston North, who supplied cultures of Metarrhizium anisopliae, and to the people from the MAF/DSIR/Massey University research campus who gave useful advice and permitted the use of their equipment. Special thanks is given to Mr Ted Roberts, Agronomy Dept., for his concise advice before these studies began.

The use of field trial sites, and wool-shed accommodation at Mr Geoff Thompson’s property was appreciated, as well as the genial co-operation of his farm manager, Mr Ken Murdie. Mr Alan Carpenter, MAF, kindly introduced me to these people.

Finally special thanks must go to the people who helped with encouragement during the collation of results and the writing of this Thesis which, at times lost momentum. The presentation by the author, of a paper on aspects of these studies at the Third Australasian Conference on Grassland Invertebrate Ecology, Adelaide (Nov. - Dec. 1981), gave impetus for the completion of this Thesis. Also the assistance of Vasi, the typist, was of great value.
CONTENTS

<table>
<thead>
<tr>
<th>Abstract</th>
<th>iv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgements</td>
<td>v</td>
</tr>
<tr>
<td>Contents</td>
<td>vi</td>
</tr>
<tr>
<td>List of Tables</td>
<td>ix</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xiv</td>
</tr>
<tr>
<td>List of Plates</td>
<td></td>
</tr>
</tbody>
</table>

CHAPTER

SECTION ONE: INTRODUCTION

1 **INTRODUCTION**

1.1 The pest.
1.2 Porina damage.
1.3 The use of baits for insect control.
1.4 The present study.

2 **GENERAL METHODS**

2.1 Bait sizes, treatments and analysis.
2.2 Laboratory methods.
2.3 Field studies.

3 **STUDY AREAS**

3.1 Laboratory studies.
3.2 Field studies.
3.3 Taranaki field collection site.

SECTION TWO: LABORATORY STUDIES.

4 **PETRI DISH FEEDING STUDIES**

4.1 Introduction.
4.2 Special methods.
4.3 Results.

5 **LUNCH-BOX FEEDING STUDIES**

5.1 Introduction.
5.2 Special methods.
5.3 Results.
<table>
<thead>
<tr>
<th>SECTION</th>
<th>TITLE</th>
<th>SUB-TITLES</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>ACCEPTANCE OF BAITS UNDER CONTROLLED NATURAL CONDITIONS.</td>
<td>6.1 Introduction.</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.2 Special methods.</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.3 Results.</td>
<td>40</td>
</tr>
<tr>
<td>7</td>
<td>EFFECT OF TREATED BAITS ON SLUGS</td>
<td>7.1 Introduction.</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.2 Special methods.</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.3 Results.</td>
<td>47</td>
</tr>
<tr>
<td>8</td>
<td>DISCUSSION OF LABORATORY STUDIES</td>
<td>8.1 Introduction</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8.2 Petri dish feeding studies.</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8.3 Lunch-box feeding studies.</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8.4 Acceptance of baits under controlled natural conditions.</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8.5 Effect of treated baits on slugs.</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8.6 Conclusions.</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>SECTION THREE: FIELD STUDIES.</td>
<td>9.1 Introduction.</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>HAUORONGO SMALL PLOT FIELD EXPERIMENTS.</td>
<td>9.2 Experimental design.</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9.3 Special methods.</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9.4 Results.</td>
<td>62</td>
</tr>
<tr>
<td>10</td>
<td>PERSISTENCE OF BAITS AND SPRAY APPLICATIONS IN THE FIELD.</td>
<td>10.1 Introduction.</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.2 Experimental design.</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.3 Special methods.</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.4 Results.</td>
<td>72</td>
</tr>
<tr>
<td>11</td>
<td>WAIKANAE LARGE PLOT FIELD EXPERIMENTS.</td>
<td>11.1 Introduction.</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11.2 Experimental design.</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11.3 Special methods.</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11.4 Results.</td>
<td>80</td>
</tr>
</tbody>
</table>
Discussion and Conclusions of Field Trials

12.1 Hauorongo small plot experiments. 87
12.2 Persistence of baits and spray applications in the field. 88
12.3 Waikanae field experiments. 88
12.4 General discussion and conclusions of field trials. 89
12.5 Cost analysis from field trials 92

Section Four: General Discussion and Conclusion

13 GENERAL DISCUSSION AND CONCLUSION.

13.1 General discussions 93
13.2 Conclusion. 94

Section Five:

REFERENCES 95

APPENDIX

<table>
<thead>
<tr>
<th>ONE</th>
<th>101</th>
</tr>
</thead>
<tbody>
<tr>
<td>TWO</td>
<td>102</td>
</tr>
<tr>
<td>THREE</td>
<td>104</td>
</tr>
<tr>
<td>FOUR</td>
<td>106</td>
</tr>
<tr>
<td>FIVE</td>
<td>107</td>
</tr>
<tr>
<td>SIX</td>
<td>108</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>19</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>21</td>
</tr>
<tr>
<td>7</td>
<td>22</td>
</tr>
<tr>
<td>8</td>
<td>22</td>
</tr>
<tr>
<td>9</td>
<td>23</td>
</tr>
<tr>
<td>10</td>
<td>24</td>
</tr>
<tr>
<td>11</td>
<td>25</td>
</tr>
<tr>
<td>12</td>
<td>34</td>
</tr>
<tr>
<td>13</td>
<td>40</td>
</tr>
<tr>
<td>14</td>
<td>41</td>
</tr>
<tr>
<td>15</td>
<td>42</td>
</tr>
</tbody>
</table>

<p>| Examples of types of insects controlled by baits. | 5 |
| Questions posed at the beginning of these studies. | 7 |
| Common names and full names of chemicals used in these studies. | 9 |
| Treatments originally used in petri dish feeding studies. | 19 |
| Amount (mg ± SE) of chipped wheat bait (No.2) eaten with varying temperatures over two and four days. | 20 |
| Relationship between feeding, and weight change (live larvae). | 21 |
| Percentage (%) of porina feeding and those losing weight at different temperatures (including dead larvae). | 22 |
| Mortality of porina kept in petri dishes at different temperatures. | 22 |
| Comparison of the mean number and weight (mg ± SE) of bait taken (15°C). | 23 |
| Fresh weight (mg ± SE) of wheat (No.2) and white clover consumed in petri dishes when offered together to porina at various temperatures (after 2 days and 4 days). | 24 |
| Fresh weight (mg ± SE) of wheat (No.2), white clover and perennial ryegrass consumed when offered in pairs, at 15°C (after 2 days and 4 days). | 25 |
| Number of food caches taken by porina when offered a choice between two foods (after 2 days at 15°C). | 34 |
| The maximum distance foraged (cm ± SE) at baits removed from the surface of undisturbed turf bins in climate rooms (after 4 days). | 40 |
| The mean numbers (X ± SE) of baits removed from the surface of undisturbed turf bins in climate rooms (after 4 days). | 41 |
| The weight (mg ± SE) of baits removed from the surface of undisturbed turf bins in climate rooms (after 4 days). | 42 |</p>
<table>
<thead>
<tr>
<th>TABLE</th>
<th>Mean mortality (%) of slugs fed on treated baits (after 10 days).</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Dislodgement and condition of untreated baits (after 4 days).</td>
<td>47</td>
</tr>
<tr>
<td>17</td>
<td>Treatments for the assessment of the relationship between the insecticide dosage and mortality (3 replicates).</td>
<td>48</td>
</tr>
<tr>
<td>18</td>
<td>Treatments for the assessment of bait density and porina mortality relationships (3 replicates).</td>
<td>59</td>
</tr>
<tr>
<td>19</td>
<td>Treatments for the assessment of the relationship between the type of insecticide and carrier, and mortality.</td>
<td>60</td>
</tr>
<tr>
<td>20</td>
<td>Treatments for the assessment of the relationship between Metarrhizium infected baits and mortality.</td>
<td>60</td>
</tr>
<tr>
<td>21</td>
<td>Porina mortalities resulting from various bait and spray treatments (after 10 days).</td>
<td>63</td>
</tr>
<tr>
<td>22</td>
<td>Significant differences (p < 0.05) between porina mortalities gained from different treatments.</td>
<td>64</td>
</tr>
<tr>
<td>23</td>
<td>The mortality of porina in relation to different treatments of baits with Metarrhizium.</td>
<td>65</td>
</tr>
<tr>
<td>24</td>
<td>Percentage removal of baits from varying treatment plots (after 10 days).</td>
<td>65</td>
</tr>
<tr>
<td>25</td>
<td>Dead slugs and earthworms on treated and untreated plots (after 10 days).</td>
<td>67</td>
</tr>
<tr>
<td>26</td>
<td>Porina mortality (%) when fed field exposed, treated and untreated food sources.</td>
<td>73</td>
</tr>
<tr>
<td>27</td>
<td>Percentage (%) of total number of baits and area of clover offered, consumed (after 1 day at 10°C).</td>
<td>74</td>
</tr>
<tr>
<td>28</td>
<td>Original treatments in the large plot trials (replicated 4 times).</td>
<td>78</td>
</tr>
<tr>
<td>29</td>
<td>Later treatments in the large plot trials (not replicated).</td>
<td>79</td>
</tr>
<tr>
<td>30</td>
<td>Percentage mortality in the major trials, after 10 and 30 days.</td>
<td>82</td>
</tr>
<tr>
<td>31</td>
<td>Percentage mortalities at site No. 2 after 10 days, 20 and 30 days.</td>
<td>82</td>
</tr>
<tr>
<td>32</td>
<td>Percentage mortalities at the first additional site, No. 5, after 10 days and 30 days.</td>
<td>83</td>
</tr>
<tr>
<td>TABLE</td>
<td>PAGE</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Percentage mortalities at the additional site No. 6 after 10 days and 30 days.</td>
<td>84</td>
</tr>
<tr>
<td>35</td>
<td>Initial mean porina populations (per 0.16 m²) at the trial sites.</td>
<td>84</td>
</tr>
<tr>
<td>36</td>
<td>Cover (%) recordings from five treatment sites.</td>
<td>85</td>
</tr>
<tr>
<td>37</td>
<td>The direction exposed to and slope, of each trial site.</td>
<td>85</td>
</tr>
<tr>
<td>38</td>
<td>A comparison of spray and bait treatments.</td>
<td>92</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>DESCRIPTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A map showing the locality of the two field experimental sites, Hauorongo and Waikanae, in the lower North Island.</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>The relationship between temperature and consumption of wheat (Size No.2) by porina larvae in petri dishes over two and four days.</td>
<td>26</td>
</tr>
<tr>
<td>3</td>
<td>The relationship between temperature and consumption over two days of wheat and white clover.</td>
<td>27</td>
</tr>
<tr>
<td>4</td>
<td>The relationship between temperature and consumption by porina larvae in petri dishes over four days, of wheat (No.2) and white clover.</td>
<td>28</td>
</tr>
<tr>
<td>5</td>
<td>The amounts eaten by porina larvae of three food sources offered in pairs in petri dishes at 15°C, over two and four days.</td>
<td>29</td>
</tr>
<tr>
<td>6</td>
<td>The percentage of replicates and the total number of food caches taken by porina larvae in each lunch box area at 15°C, after two days.</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>(a) Wheat bait and perennial ryegrass.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(b) Wheat bait and white clover.</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>The percentage of replicates and the class of porina larval feeding in lunch box arenas at 15°C after two days.</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>(a) Wheat bait and white clover.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(b) Wheat bait and perennial ryegrass.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>The percentage of replicates and the class of porina larval feeding in lunch box arenas, at 15°C after two days.</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>(a) Metarrhizium infected wheat and untreated wheat.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(b) Metarrhizium infected wheat and white clover.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(c) Fenitrothion treated wheat and white clover.</td>
<td></td>
</tr>
</tbody>
</table>
The relationship between (a) the weight, (b) the number, wheat baits of three sizes, removed from the surface of turf in bins by porina larvae after 4 days at 12°C.

The relationship between (a) the weight (b) the number of wheat baits, of three sizes, removed from the surface of turf in bins by porina larvae after 4 days at 16°C.

The relationship between (a) the weight (b) the number of wheat baits, of three sizes, removed from the surface of turf in bins by porina larvae after 4 days at 20°C.

The relationship between porina larval mortality and the insecticide rate (Kg ai/ha) assuming a bait rate of 1 chip/6.25 cm², or dosage (% ai/d.wt), of wheat baits (No.1) applied in the field.

The relationship between porina larval mortality and the treated wheat bait (No.1) density, applied in the field.

The relationship between the mortality of porina larvae when fed fenitrothion and actellic treated wheat baits, fenitrothion sprayed leaves and untreated wheat baits, that had been field exposed for varying days.

A diagram of the sampling design used in the large plot field experiments, for each treatment.
LIST OF PLATES

<table>
<thead>
<tr>
<th>PLATE</th>
<th>Description</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The food types; wheat (No.2), white clover, and perennial ryegrass, used in feeding studies in petri dishes.</td>
<td>54</td>
</tr>
<tr>
<td>2</td>
<td>The arenas (two per box) used for lunch-box feeding studies.</td>
<td>54</td>
</tr>
<tr>
<td>3</td>
<td>Turf bin used in the studies of bait acceptance under controlled conditions.</td>
<td>55</td>
</tr>
<tr>
<td>4</td>
<td>A Metarrhizium infected larva found in the field.</td>
<td>55</td>
</tr>
<tr>
<td>5</td>
<td>A small plot field site at Hauorongo.</td>
<td>56</td>
</tr>
<tr>
<td>6</td>
<td>A large plot field site at Waikanae.</td>
<td>56</td>
</tr>
</tbody>
</table>