ISLAND BIOGEOGRAPHY:
A STUDY OF HABITAT ISLANDS OF MOUNTAIN BEECH FOREST
(Nothofagus solandri, var. cliffortioides)
IN TONGARIRO NATIONAL PARK

Moyra Seden

A thesis presented in partial
fulfilment of the requirement for the degree
of Master of Science in Zoology at
Massey University

1982
Abstract.

MacArthur and Wilson's (1967) model for island biogeography is examined, particularly with regard to the proposed species-area relationship. The first chapter includes a consideration of the theoretical background.

Nine habitat islands and corresponding mainland regions of similar area were selected. All the sites possess a canopy of mountain beech trees, *Nothofagus solandri* var. *cliffortioides*, and are located in the western segment of Tongariro National Park. Plants and litter animals were sampled from within these sites to determine the possible relationship between species and area.

Forest plant species numbers as well as proportions, assessed using a modification of the Point-centred quarter method, revealed a statistically significant species-area relationship.

Litter Crustacea collected in one thousandth of a square metre core samples, and removed from cores by wet extraction, show a gradation in habitat preference, hence a species-area relationship cannot be determined.

A wide range of animals collected in pitfall traps appear also not to produce a significant species-area relationship. Possible reasons for the obscurity of such a relationship are considered.

An overall assessment of the information gathered in the light of island biogeographic theory is presented, and some more recent thought on the causal explanations for the species-area relationship are discussed.
Acknowledgements.

The assistance, encouragement and ideas of a number of people have contributed greatly to this thesis. I should like to express my sincere thanks to all of them.

Dr. J. P. Skipworth, my supervisor, has provided invaluable constructive help and support throughout the study. Possible methods of sampling, extracting and examining litter animals have been suggested by Dr. J. Springett (Research Division, M.A.F.). Numerous statistical problems have been solved by D. C. Drummond, who has also offered some interpretational ideas.

Dr. H. P. McColl (Ecology Division, D.S.I.R.), Dr. M. J. Meads (Ecology Division, D.S.I.R.) and D. M. Mill all aided in the identification of animals; Dr. Meads particularly with Carabidae and Diana Mill with Diplopoda. Dr. I. A. E. Atkinson (Botany Division, D.S.I.R.), identified some Coprosma species which presented difficulties.

Thanks are also due to the Tongariro National Park Board for permission to carry out the project, and for the use of facilities on several occasions.

I am grateful to my classmates Simon Kelton and Peter Lo who have provided enthusiasm, advice and equipment during the study. The skills of both my parents have been enlisted in the presentation of this thesis; my Mother has typed the script and my Father printed the colour photographs. Last, but by no means least, my husband Michael who has not only aided in the field work, but also contributed financially, and has been tolerant and patient throughout.

I am indebted to all these people; their endeavours on my behalf are greatly appreciated.
Table of Contents

Abstract
Acknowledgements
Table of contents
List of tables
List of figures
List of plates

Chapter 1: Introduction

Section 1
The background theory; a literature review

Section 2
Study aims
2.1. General
2.2. Basic questions arising from island biogeographic theory
2.3. Parameters to be determined

Chapter 2: Plants

Section 1
Methods
1.1. Reference plant collection
1.2. Plant sampling procedure

Section 2
Results
2.1. The exclusion of non-forest plants
2.2. Presence or absence of all species in all sites
2.3. Chi-squared analysis of the total number of plant species in each site
2.4. Jaccard's coefficient of community
2.5. Proportions of all species in all sites
2.6. Spearman-Rank correlation test
2.7. Ellenberg's frequency coefficient of community similarity
Chapter 3: Litter Crustacea

Section 1 Methods

1.1. Background

1.2. Sampling procedure

1.3. Extraction method, equipment and procedure

1.3.1. Method

1.3.2. Equipment

1.3.3. Procedure

1.4. Examination of samples

1.5. Identification and brief habitat description

1.5.1. *Mesocypris audax* (Ostracoda)

1.5.2. *Trichoniscus phormianus* (Isopoda)

1.5.3. *Bryocamptus stouti* and *Goniocyclops silvestris* (Copepoda)

Section 2 Results

2.1. Habitat preferences

2.2. Raw data; total, mean and range

2.3. Island-mainland comparison

Chapter 4: Pitfall Trap Animals

Section 1 Methods

1.1. Background

1.2. Sampling procedure

1.3. Sorting and counting

1.4. Identification

Section 2 Results

2.1. Non-forest animals

2.2. Number of species and absolute numbers of animals found in each group in all sites

2.3. Chi-squared analysis of species numbers and numbers of individuals

2.4. Jaccard's coefficient of community

2.5. Ellenburg's frequency coefficient of community similarity
<table>
<thead>
<tr>
<th>Chapter 5</th>
<th>Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 1</td>
<td>Plants</td>
</tr>
<tr>
<td>Section 2</td>
<td>Litter crustacea</td>
</tr>
<tr>
<td>Section 3</td>
<td>Pitfall trap animals</td>
</tr>
<tr>
<td>3.1.</td>
<td>Feeding relationships</td>
</tr>
<tr>
<td>3.2.</td>
<td>Colonization and survival abilities</td>
</tr>
<tr>
<td>3.3.</td>
<td>Habitat requirements</td>
</tr>
<tr>
<td>3.4.</td>
<td>Species packing</td>
</tr>
<tr>
<td>3.5.</td>
<td>Individual taxonomic differences</td>
</tr>
<tr>
<td>3.6.</td>
<td>Sampling procedure</td>
</tr>
<tr>
<td>Section 4</td>
<td>Combined plant and animal data</td>
</tr>
<tr>
<td>Section 5</td>
<td>Possible causal explanations for the species-area relationship</td>
</tr>
<tr>
<td>Section 6</td>
<td>Species co-occurrence on islands</td>
</tr>
<tr>
<td>Section 7</td>
<td>Conservation and reserve size</td>
</tr>
<tr>
<td>Section 8</td>
<td>Conclusion</td>
</tr>
<tr>
<td>Appendices I to IX</td>
<td></td>
</tr>
<tr>
<td>Bibliography</td>
<td>115</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table I Site area and distance relationships
Table II Chi-squared analysis of inside and outside islands and mainlands
Table III Total number of plant species in each site, and the observed expected values for a chi-squared test performed on these figures
Table IV Jaccard's coefficient of community for plant species
Table V Speerman-Rank correlation values
Table VI Ellenburg's frequency coefficient of community similarity for plants
Table VII Observed/Expected values for the chi-squared comparison of total numbers of animals found in forest and non-forest regions.
Table VIII Observed/Expected values for the chi-squared comparison of total numbers of animals found in island and non-forest regions.
Table IX Calculated mean number of animals per square metre.
Table X Observed/Expected values for chi-squared tests performed on data for individual sites
Table XI Total animal species in taxonomic groups excluding non-forest species
Table XII Total animal species in taxonomic groups including non-forest species
Table XIII Total number of animals including non-forest species
Table XIV Observed/Expected values for significant chi-squared analysis of numbers of animals in island-mainland pairs
Table XV Jaccard's coefficient of community for animal species

Between pp.

Table I: 13 & 14
Table II: 17 & 18
Table III: 19 & 20
Table IV: 21 & 22
Table V: 23 & 24
Table VI: 24 & 25
Table VII: page 34
Table VIII: page 35
Table IX: 37 & 38
Table X: 39 & 40
Table XI: 46 & 47
Table XII: 47 & 48
Table XIII: 47 & 48
Table XIV: 49 & 50
Table XV: 50 & 51
Table XVI Ellenburg's frequency coefficient of community similarity for animal species.

Table XVII Total number of species, both plant and animal, found in islands and mainlands
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Between pp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.</td>
<td>Equilibrium model of the biota of a single island (after MacArthur and Wilson 1967)</td>
<td>3 & 4</td>
</tr>
<tr>
<td>Figure 2.</td>
<td>Map showing location of sites in Tongariro National Park</td>
<td>11 & 12</td>
</tr>
<tr>
<td>Figure 3.</td>
<td>Diameter structure of trees in island mainland pairs</td>
<td>12 & 13</td>
</tr>
<tr>
<td>Figure 4.</td>
<td>Species-log area graph for plants</td>
<td>20 & 21</td>
</tr>
<tr>
<td>Figure 5.</td>
<td>Species-distance graph for plants</td>
<td>20 & 21</td>
</tr>
<tr>
<td>Figure 6.</td>
<td>Jaccard's coefficient of community for plants (plotted against log area)</td>
<td>22 & 23</td>
</tr>
<tr>
<td>Figure 7.</td>
<td>Ellenburg's frequency coefficient of community similarity for plants (plotted against log area)</td>
<td>25 & 26</td>
</tr>
<tr>
<td>Figure 8.</td>
<td>Wet funnel extraction apparatus (after Burges and Raw, 1967)</td>
<td>30 & 31</td>
</tr>
</tbody>
</table>
| Figure 9. | A Species-log area graph for animals
B Species-distance graph for animals | 48 & 49 |
| Figure 10. | Jaccard's coefficient of community for animals (plotted against log area) | 51 & 52 |
| Figure 11. | Ellenburg's frequency coefficient of community similarity for animals (plotted against log area) | 52 & 53 |
| Figure 12. | A Species-area graph for plants
B Log species-log area graph for plants | 55 & 56 |
| Figure 13. | A Species-area graph for animals
B Log species-log area graph for animals | 67 & 68 |
| Figure 14. | A Species-area graph for all species (animals and plants)
B Species-log area graph for all species
C Log species-log area graph for all species | 68 & 69 |
LIST OF PLATES

<table>
<thead>
<tr>
<th>Plate</th>
<th>Description</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate I</td>
<td>Dense mainland forest subcanopy and undergrowth; Coprosma spp. at rear, Neopanax colensoi (juvenile) and Astelia nervosa in the foreground</td>
<td>10 & 11</td>
</tr>
<tr>
<td>Plate II</td>
<td>Dense forest growth; Myrsine divaricata in the background, Astelia nervosa in the foreground</td>
<td>10 & 11</td>
</tr>
<tr>
<td>Plate III</td>
<td>Plants on the forest floor; Coprosma spp. and Astelia nervosa</td>
<td>10 & 11</td>
</tr>
<tr>
<td>Plate IV</td>
<td>Small shrubs on the floor of Site 8 island; Neopanax simplex (juvenile), Gaultheria spp. and Hebe venustula</td>
<td>10 & 11</td>
</tr>
<tr>
<td>Plate V</td>
<td>Sparse juvenile plants on the floor of Site 9 island; Neopanax simplex, Griselinia littoralis and Coprosma spp.</td>
<td>10 & 11</td>
</tr>
<tr>
<td>Plate VI</td>
<td>Litter on the floor of Site 8 island; in contrast to the mainland forest, few plants are visible</td>
<td>10 & 11</td>
</tr>
<tr>
<td>Plate VII</td>
<td>Site 1 island</td>
<td>11 & 12</td>
</tr>
<tr>
<td>Plate VIII</td>
<td>Site 2 island</td>
<td>11 & 12</td>
</tr>
<tr>
<td>Plate IX</td>
<td>Site 3 island</td>
<td>11 & 12</td>
</tr>
<tr>
<td>Plate X</td>
<td>Site 4 island at left, Site 7 island at right</td>
<td>11 & 12</td>
</tr>
<tr>
<td>Plate XI</td>
<td>Site 5 island</td>
<td>11 & 12</td>
</tr>
<tr>
<td>Plate XII</td>
<td>Site 6 island</td>
<td>11 & 12</td>
</tr>
<tr>
<td>Plate XIII</td>
<td>Left hand arrow; Site 6 island Central arrow; Site 9 island Right hand arrow; Site 8 island</td>
<td>11 & 12</td>
</tr>
<tr>
<td>Plate XIV</td>
<td>Site 8 island</td>
<td>11 & 12</td>
</tr>
<tr>
<td>Plate XV</td>
<td>Wet funnel extraction apparatus</td>
<td>30 & 31</td>
</tr>
<tr>
<td>Plate XVI</td>
<td>Pitfall trap</td>
<td>43 & 44</td>
</tr>
</tbody>
</table>