Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
PROMOTION OF BROWNING IN THE DEVELOPMENT
OF NEW DAIRY PRODUCTS

A Thesis
Presented to
the Faculty of the Department of Food Science and Biotechnology
Massey University

In Partial Fulfilment
of the Requirements for the Degree
Master of Food Technology in Food Processing

by
Warwick David Ward
July 1967
"It is not enough to know; we must turn what we know to account. It is not enough to will; we must do."

- Goethe
ACKNOWLEDGEMENTS

The author wishes to thank the supervising committee of Mr. H. A. L. Morris (Convenor), Dr. E. L. Richards, and Dr. R. M. Dolby. Sincere appreciation and gratitude go to Mr. H. A. L. Morris for his encouragement, and particularly for his keen interest in this study. His practical experience, willingness to take part in lengthy discussions, and help in the planning and presentation of this thesis has proved to be invaluable.

Thanks are due to the Dairy Production and Marketing Board and the Sanitarium Health Food Company for financial assistance.

Special thanks to Miss D. Scott for the excellent photography and printing of the graphs and photographs, and also to Miss C. Mitchell for her hand in the photographs, studio work, and fixing of the graphs and photographs.

For much fruitful help and discussion, the author is indebted to the willingness of Mr. J. G. Clarke, Dr. W. B. Sanderson, and Mr. D. Box, of the New Zealand Dairy Research Institute.

To the untiring help and patience of his sister, Miss M. Ward, in the preparation and typing of this thesis the author is gratefully indebted for the final presentation. The author also wishes to thank his family and close friends for their encouragement, and for their help in so many ways to make this work an enjoyable experience.

The assistance and interest of numerous other people who have contributed in many ways is also much appreciated and has made the work on this thesis much more interesting.
TABLE OF CONTENTS

PART A BASIC STUDIES ON THE BROWNING OF MILK SOLIDS

SECTION I. A REVIEW OF PREVIOUS RESEARCH INTO THE BROWNING OF DAIRY PRODUCTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>II.</td>
<td>Reactants and Mechanism</td>
<td>2</td>
</tr>
<tr>
<td>III.</td>
<td>Phenomena Associated with Browning</td>
<td>3</td>
</tr>
<tr>
<td>A.</td>
<td>Compound formation</td>
<td>4</td>
</tr>
<tr>
<td>B.</td>
<td>Reducing substances</td>
<td>5</td>
</tr>
<tr>
<td>C.</td>
<td>Strecker degradation</td>
<td>6</td>
</tr>
<tr>
<td>D.</td>
<td>Loss of nutritive value</td>
<td>7</td>
</tr>
<tr>
<td>E.</td>
<td>Loss of protein solubility</td>
<td>8</td>
</tr>
<tr>
<td>IV.</td>
<td>Caramelized Flavour</td>
<td>9</td>
</tr>
<tr>
<td>V.</td>
<td>Factors Affecting the Rate of the Browning Reaction</td>
<td>10</td>
</tr>
<tr>
<td>VI.</td>
<td>Salient Features of Previous Work</td>
<td>11</td>
</tr>
</tbody>
</table>

SECTION II. DEVELOPMENT OF A METHOD FOR MEASURING THE DEGREE OF BROWNING IN A DAIRY PRODUCT SYSTEM

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>Chemical Methods</td>
<td>19</td>
</tr>
<tr>
<td>A.</td>
<td>Literature review</td>
<td>20</td>
</tr>
<tr>
<td>B.</td>
<td>Selection of a method for studies on advanced browning</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>in sweetened condensed milk</td>
<td></td>
</tr>
<tr>
<td>II.</td>
<td>Development of a Method of Measuring Product Colour as an Index to the Progress and Rate of the Browning Reaction</td>
<td>28</td>
</tr>
</tbody>
</table>
A. Literature review .. 28
B. Development of a method for the measurement of
 browning - based on product colour 29
C. A new method of plotting reflectance results to
 determine the rate of browning 32
III. Correlation Between Chemical (HMF) and Physical (Reflectance)
 Methods for the Measurement of the Rate of Browning ... 36
IV. Summary .. 39

SECTION III. A BASIC STUDY OF FACTORS INFLUENCING BROWNING IN SWEETENED
 CONDENSED MILK 41
I. Studies on the Effect of Temperature on the Development
 of Dairy Caramel 43
II. Study of the Effect of Moisture Concentration on the Rate
 of Browning of Sweetened Condensed Milk 49
 A. Effect of moisture concentration on browning in
 sweetened condensed milk 49
 B. Effect of moisture content on browning in a model
 system containing skim milk powder 51
 C. A proposed theory to explain the effect of moisture
 concentration on browning in liquid systems - arising
 out of the previous study of sweetened condensed milk
 and glycerol-milk powder systems 55
 D. Changes in moisture concentration during browning of
 sweetened condensed milk 58
III. Studies on the Effect of pH on Browning in Sweetened
 Condensed Milk 61
IV. Comparison of the Effect of Two Sugars on the Browning Reaction in Concentrated Milk 66

A. Effect on the rate of browning ... 66

B. Rate of solubility decrease ... 69

V. Summary of Factors Influencing Browning in Sweetened Condensed Milk ... 70

PART B. DEVELOPMENT OF NEW PRODUCTS BY PROMOTING BROWNING IN MILK SOLIDS

SECTION IV. STUDIES ON THE DEVELOPMENT OF A SWEETENED CARAMELIZED DAIRY

SPREAD ... 74

I. Introduction ... 75

II. Flavour Development ... 76

A. Theory ... 76

B. Technological applications .. 78

III. Texture Development ... 83

A. Theoretical study ... 83

B. Technological applications .. 100

IV. Possible Commercial Production Methods 102

A. Caramelization in the packaging container 102

B. Caramelization before packaging .. 107

C. Possible commercial product types 111

V. Studies on the Changes Occurring During Storage of Caramelized Sweetened Condensed Milk .. 112

VI. Summary ... 122
One readily demonstrable effect resulting from the prolonged heat treatment of milk is browning. A form of non-enzymic browning due to interaction of aldoses with free amino-groups occurs in many foods, and hence this reaction is of broad significance in the food field; e.g., dry milk products (29), processed potatoes (95), dried fruit (102), dried whole eggs (73), dried meat (99), and liquid and concentrated milk products (33,83). The significance of browning in food technology has two aspects - the desirable and the undesirable.

In many areas of the world today people are undernourished, malnourished, and even starved. At the same time in other parts of the world, food is abundant to the point of substantial excess. Although many factors contribute to this unbalance, food spoilage is an important consideration. Some excess food can be processed and stored in a practical manner involving little or no deterioration, but some of it faces spoilage despite man's preventive efforts. One vexing problem of food spoilage is browning which may affect many food products. These include dried food such as milk, eggs, fruits, fruit juices, meat, fish and vegetables (12); canned milk, fruit, and vegetables; and other foods such as molasses. Loss of palatability and nutritive value as well as undesirable changes in physical properties frequently attend the browning of food to varying degrees of intensity, depending on the stage to which the reaction has progressed. This is the undesirable aspect of browning.

On the other hand, the Maillard reaction can make a positive contribution to food technology by producing desirable colours, flavours and aromas in many foods such as ready-to-serve cereals, toffees, roasted coffee, malted barley, and baked goods (65). Toasting, baking, roasting, and frying are processes
aimed at intentionally browning the food. Although there is some loss of amino acids when these flavours are produced, the loss is not usually of much importance and is accepted as a price worth paying. The Maillard reaction can be exploited for particular purposes by the addition of reducing agents to the food. For example, the inclusion of milk powder in a loaf of bread permits more even toasting at a lower temperature because of the presence of lactose. Another example is the production of chicken and meat-like flavours by heating amino acids with pentose sugars and aldehydes. The distinctive caramel and butterscotch flavours derived from dairy products result from the browning of milk or milk components. Thus, it is clear that browning has two aspects, both of which concern the acceptability of man’s food.

It is the latter aspect which is of principal interest in the present work. By promoting browning in milk solids to varying degrees of intensity, a range of palatable caramel flavours may be obtained. It is clear that dairy-caramel flavours are appetizing by the fact that caramelized milk products are very popular, and are eaten extensively in South America, India, and Europe. Traditional products produced domestically include 'Dulce de leche' (Argentina, Uruguay), 'Manjar blanco' (Chile), and 'Khao' (India). In Argentina, 2,800 tons of 'Dulce de leche' are commercially produced per annum; 98% of this production is consumed internally. Clearly then, many people enjoy dairy-caramel flavours when purposely produced. With the realization that a potential market is already present, the purpose of this thesis is to explore the possibility of diversifying New Zealand dairy products by the promoted caramelization of milk solids.

A review of previous research into the browning reaction in milk showed that much work has been done and copious literature exists, but most of this neglects the beneficial effects of non-enzymic browning in milk and concentrates
on the deteriorative effects. Consequently, methods of measuring browning mainly involve measurements of the reactants and early intermediates as a basis for inhibiting the early stages of browning. As a result of this bias in previous research, the first task of this study was to develop a method of measuring promoted browning ("caramelization") in milk. The method finally chosen was the reflectance measurement of colour.

A reliable method of measuring promoted browning made possible a study of the factors affecting promoted browning, and caramel flavour development, in sweetened condensed milk. The study was restricted to browning in "liquid" systems as the factors affecting browning in "dry" milk powder have been well documented (65,83). In this context, there were two principal areas of interest with regard to browning and associated changes in milk systems. One is practical and concerns the manipulation of process and product variables such as temperature, time, pH, and moisture content, to obtain a controlled amount of browning. The other is fundamental and concerns making the knowledge of milk and its behaviour as complete as possible.

Without incorporation into palatable food structures and textures any flavour is of little value as food. Hence, the remainder of this thesis is an exploration of the possibilities of incorporating dairy caramel flavours into conventional food textures, structures, and types which are of proven palatability. A survey of present food forms marketed, and a consideration of recent trends in food marketing suggests that the following product types are of proven consumer acceptance and worthy of further study and development.

1. Sweet caramelized spread for use in the same way as jams; i.e., spread, pie filling, cakes, etc.
2. Porous wafer or biscuit type of product - perhaps for use as a high protein supplement in a form which the consumer is familiar with.
3. Concentrated dairy caramel flavour in powder or liquid concentrate form for general food flavouring.

4. Confections - sweets, toffees, milk caramel, hokey-pokey, etc.
 (The production of caramel confections is well documented and was not studied further.)

With an aim of developing these general product types a fundamental study was undertaken to define the factors affecting flavour, colour, and texture of browned milk solids.