Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Biological control of *Botrytis cinerea* on kiwifruit

A thesis presented in partial fulfilment
of the requirements for the degree
of Master of Horticulture science

at

Massey University

Samir Shamouel Sada

1992
ABSTRACT

Screening for potential antagonists was carried out on plant parts of kiwifruit (*Actinidia deliciosa var. deliciosa* [A.Chev]. Lang & Ferguson, cv. Hayward) taken from kiwifruit orchards in four collections.

A range of microorganisms have shown potential activity against *Botrytis cinerea* Persoon. ex Fries, on Potato dextrose agar (PDA) petri dish at various temperatures, including 0°C.

The antagonism was also tested on different media with different pH for antibiosis or mycoparasitism action.

It was found that temperature had a much greater effect on growth and activity of the antagonists than did pH.

Three isolates (FB3, FF9, FO30) which showed good biocontrol activity were tested for ability to inhibit spore germination and germ tube elongation of *B. cinerea* on 2.5% vegetable juices (V.8) medium discs. One of these isolates (FO30: *Fusarium merismoides*) showed such ability.

These isolates were selected for a trial on kiwifruit.

Stem end rot was partially controlled under storage condition when the pathogen (*B. cinerea*) and the antagonist were inoculated simultaneously.

Harvested fruit were inoculated with different inoculum levels and subjected to different curing periods.

The inoculum level of *Fusarium merismoides* isolate FO30 showed a significant affect on the percentage of soft rot caused by *B. cinerea*, and reduced disease incidence on kiwifruit by 17-21% after 13 weeks storage at 0°C.

The curing period did not have any significant effect on the percentage of soft rot except when the fruit was cured for 2 days at ambient temperatures, inoculated, and left 2 further days at ambient temperatures before storage at 0°C.

Further work is required to investigate enhancement of biocontrol of *B. cinerea* on kiwifruit by manipulation of the curing period.

Several microscopic stains including Chlorazol black, Lactophenol cotton blue and phloxine gave good staining of the spores and mycelium of *B. cinerea* and antagonists on 5% V.8 medium and kiwifruit tissue.
ACKNOWLEDGEMENTS

First thanks to God, the creator of humankind.

My sincere thanks go to my supervisor, Dr. P. Long, for his constant support and guidance throughout this study and for his careful assistance during the preparation of this thesis.

I would like also to thank my co-supervisor, Prof. E. W. Hewett, for his instruction during this study.

Thanks are also due to the members of the Department of Horticulture and Plant health who have contributed in this study, among them A. Qadir, B. Dadzie, S. Bautista, and A. Abdulla of Animal Science Department.

I acknowledge also the valuable assistance from the technician of the Plant Health Dept., Hugh Neilson.

Thanks for my loving mother for her faith and her prayer for me.

Special thanks and appreciation to my dear wife Juliette for her love and to my mother-in-law Samira Tollo and my four cousins for their support.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CLASSIFICATION, MORPHOLOGY, AND GENERAL CHARACTERISTICS</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>SYMPTOMS AND SIGNS ON FRUIT</td>
<td>5</td>
</tr>
<tr>
<td>1.4</td>
<td>EPIDEMIOLOGY OF INFECTION</td>
<td>5</td>
</tr>
<tr>
<td>1.4.1</td>
<td>Mechanism of Botrytis on flowers and stored fruits</td>
<td>5</td>
</tr>
<tr>
<td>1.4.2</td>
<td>Infection conditions</td>
<td>6</td>
</tr>
<tr>
<td>1.4.3</td>
<td>Overwintering</td>
<td>6</td>
</tr>
<tr>
<td>1.5</td>
<td>EFFECT OF PHYSICAL AND CHEMICAL ENVIRONMENT</td>
<td>7</td>
</tr>
<tr>
<td>1.5.1</td>
<td>Physical environment</td>
<td>7</td>
</tr>
<tr>
<td>1.5.2</td>
<td>Chemical environment</td>
<td>8</td>
</tr>
<tr>
<td>1.5.3</td>
<td>Nutrient requirement</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>INTRODUCTION</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>OBJECTIVES</td>
<td>11</td>
</tr>
<tr>
<td>2.3</td>
<td>WHY IS BIOCONTROL IMPORTANT</td>
<td>11</td>
</tr>
<tr>
<td>2.4</td>
<td>WHAT IS BIOCONTROL</td>
<td>12</td>
</tr>
</tbody>
</table>
2.4.1 Biocontrol agent (Antagonist) 12
2.5 MECHANISM OF BIOCONTROL 13
2.5.1 Antibiosis 13
2.5.2 Competition 14
2.5.3 Mycoparasitism 15
2.5.4 Lysis 16
2.5.5 Resistant inducement 16
2.5.6 Siderophores 17
2.5.7 Acidity (pH) 17
2.6 PRACTICAL APPLICATION 18
2.6.1 Antagonist strategies 18
2.6.2 Antagonist are resident or introduced 18
2.6.3 Desirable characteristics of an antagonist 18
2.6.4 Biocontrol manipulation 19
2.6.4.1 Manipulation of the environment 19
2.6.4.2 Manipulation of the antagonist 19
2.6.4.2.1 Manipulation by salt solutions 19
2.6.4.2.2 Manipulation by integrated biocontrol 20
2.6.4.2.3 Manipulation of genetic engineering 20
2.6.5 Effective antagonist preparation and application methods 21
2.7 VARIOUS RESEARCHES 23
2.8 REASON FOR FAILURE 25
2.9 MICROECOSYSTEM AT PLANT SURFACE AND WOUND SITE 26
2.10 CONCLUSIONS 29

CHAPTER 3 ISOLATION OF BIOCONTROL AGENTS

3.1 INTRODUCTION 31
3.2 OBJECTIVES 32
3.3 MATERIALS AND METHODS 32
3.3.1 Isolation from kiwifruit orchard 32
3.3.2 Isolation from stored fruit 33
3.3.3 Isolation from diseased fruit 33
3.4 RESULTS 34
CHAPTER 4
IDENTITY OF ISOLATES

4.1 Fusarium ISOLATE FO30
4.2 YEAST ISOLATE FB3
4.3 Phoma ISOLATE FF9
4.4 BACTERIA ISOLATE BF21

CHAPTER 5
ANTAGONIST ACTIVITY IN DIFFERENT MEDIA

5.1 INTRODUCTION
5.2 OBJECTIVES
5.3 MATERIALS AND METHODS
5.3.1 Test on various media at different temperatures
5.3.2 Test at various pH levels
5.4 RESULTS
5.5 DISCUSSION

CHAPTER 6
IN VITRO TESTING INHIBITION OF B.cinerea SPORE GERMINATION

6.1 INTRODUCTION
6.2 OBJECTIVES
6.3 MATERIALS AND METHODS
6.4 RESULTS
6.5 DISCUSSION

CHAPTER 7
EFFECT OF BIOCONTROL AGENTS ON INFECTION OF KIWIFRUIT BY B.cinerea IN STORAGE

7.1 INTRODUCTION
7.2 OBJECTIVES
7.3 MATERIALS AND METHODS
7.3.1 Source of fruit
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.3.2</td>
<td>Spore suspension</td>
<td>66</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Experimental design</td>
<td>66</td>
</tr>
<tr>
<td>7.3.4</td>
<td>Statistical methods</td>
<td>68</td>
</tr>
<tr>
<td>7.4</td>
<td>RESULTS</td>
<td>68</td>
</tr>
<tr>
<td>7.5</td>
<td>DISCUSSION</td>
<td>77</td>
</tr>
</tbody>
</table>

CHAPTER 8

STAINING SPORES AND MYCELIUM OF *B. cinerea* AND ANTAGONISTS ON AGAR MEDIA AND IN FRUIT TISSUES

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>INTRODUCTION</td>
<td>80</td>
</tr>
<tr>
<td>8.2</td>
<td>OBJECTIVES</td>
<td>80</td>
</tr>
<tr>
<td>8.3</td>
<td>MATERIALS AND METHODS</td>
<td>81</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Stain on fruit tissue</td>
<td>81</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Stain on cross and longitudinal fruit stem scar section</td>
<td>81</td>
</tr>
<tr>
<td>8.3.2.1</td>
<td>Cross section</td>
<td>81</td>
</tr>
<tr>
<td>8.3.2.2</td>
<td>Longitudinal section</td>
<td>82</td>
</tr>
<tr>
<td>8.4</td>
<td>RESULTS</td>
<td>83</td>
</tr>
<tr>
<td>8.5</td>
<td>DISCUSSION</td>
<td>89</td>
</tr>
</tbody>
</table>

CHAPTER 9

GENERAL CONCLUSIONS | 91

CHAPTER 10

FUTURE WORK | 95

GLOSSARY | 96

REFERENCES | 101

APPENDICES | 115
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLES</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1. Some examples regarding biocontrol of gray mold (B.cinerea) on horticultural products</td>
<td>24</td>
</tr>
<tr>
<td>Table 2. Antagonist isolates from four collections tested for antagonism to B.cinerea on PDA petri dishes at 0, 5, 10 and 15°C</td>
<td>36</td>
</tr>
<tr>
<td>Table 3. Antagonistic activity of the better performing antagonists from four collections towards B.cinerea on PDA petri dishes at various temperatures</td>
<td>37</td>
</tr>
<tr>
<td>Table 4. Antagonistic activity to B.cinerea on PDA petri dishes at various temperatures of fungi isolated from kiwifruit stored for more than two months in wooden boxes and single packing trays</td>
<td>38</td>
</tr>
<tr>
<td>Table 5. Antagonistic activity to B.cinerea on PDA petri dishes at various temperatures of bacteria isolated from kiwifruit stored for more than two months in wooden boxes and single packing trays</td>
<td>38</td>
</tr>
<tr>
<td>Table 6. Antagonistic activity to B.cinerea on CMA petri dishes at 0°C of Fungi isolated from diseased, coolstore fruit for more than two months in wooden boxes</td>
<td>38</td>
</tr>
<tr>
<td>Table 7. Antagonistic activity of the antagonists FF9, FO30, FB3 towards B.cinerea shown by the width of the inhibition zones (mm) in different media at various temperatures</td>
<td>51</td>
</tr>
</tbody>
</table>
Table 8. Antagonistic activity of FB3, FF9 and FO30 tested against *B. cinerea* on PDA medium in different pH at various temperatures

Table 9. Percentage germination of *B. cinerea* and maximum germ tube lengths (µm) on 2.5% V.8 agar discs inoculated with spore suspensions of *B. cinerea* or *B. cinerea* antagonists mixtures after incubation at 0°C or 20°C

Table 10. Number of infected fruit/99 at various curing periods and different inoculum levels. Fruit were stored over 13 weeks at 0°C

Table 11. Lsmeans and probability of significant differences in treatments with different inoculum levels on kiwifruit using four curing periods over 13 weeks in storage at 0°C

Table 12. Lsmeans and probability of significant differences in treatments with different curing periods on kiwifruit using different inoculum levels over 13 weeks in storage at 0°C

Table 13. Lesion development (mm) of kiwifruits inoculated with different inoculum levels over 13 weeks in storage at 0°C. Fruit are separated into 3 groups based on the week in which the disease lesion was fruit detected

Table 14. Clarity of *B. cinerea* and the antagonist spores on 5% V.8 medium and within kiwifruit tissues after treatment with various stains
LIST OF FIGURES

FIGURES

Fig 1. Isolate of FO30 (*Fusarium merismoides*): (a) Macroconidia emerged from single phialides (x 250). (b) Macroconidia stained with lactophenol cotton blue on PDA medium. (c) Colony from a drop of liquid suspension on PDA, 13d, at 20°C ± 1°C

Fig 2. Isolate of FB3 (*Rhodotorula sp.*): (a) Colony streak on PDA, 13d, at 20°C ± 1°C. (b) Cells stained with lactophenol cotton blue on PDA medium (x 100)

Fig 3. Isolate of FF9 (*Phoma sp.*): (a) Colony on PDA, 13d, at 20°C ± 1°C. (b) Mycelium and cells stained with lactophenol cotton blue on PDA medium

Fig 4. Isolate of BF21 (*Xanthomonas sp.*): (a) Colony streak on (left) PDA, 2d, (middle) NA, 2d, (right) YDCA, 1d, at 20°C ± 1°C. (b) Rod cell (x 100), coloured with gram stain

Fig 5. Antagonistic activity towards *Botrytis cinerea* on different media by using the antagonists, (left) FF9 (*Phoma sp.*), (right) FO30 (*Fusarium merismoides*), (bottom) FB3 (*Rhodotorula sp.*) incubated for (a) 26d at 0°C, (b) 9d at 10°C, (c) 5d at 20°C

Fig 6. *B.cinerea* spore germination at 0°C without (a, b, c) or with (d, e, f) the presence of FO30 for 24, 48 and 72hr

Fig 7. *B.cinerea* spore germination at 20°C without (a, b, c) or with (d, e, f) the presence of FO30 for 4, 8 and 24hr
Fig 8. Kiwifruit inoculated with 10µl drop of inoculum on the picking wound

Fig 9. Healthy and diseased fruit in single trays after inoculation with various inoculum levels and subjected to (a) CP1 and CP2 after 13 weeks storage at 0°C

Fig 10. Number of infected fruit/99 (percentage of infection) with different inoculum levels at (a) CP1, (b) CP2, (c) CP3, (d) CP4, over 13 weeks at 0°C

Fig 11. (a) B.cinerea and (b) Phoma FF9 stained with Gram’s iodine, (c) B.cinerea stained with lactophenol cotton blue, (d) Yeast FB3 and (e) Fusarium FO30 stained with Thionine in 5% phenol on 5% V.8 medium disc

Fig 12. B.cinerea: cross section of fruit stem scar showing spores stained with (a) Chlorazol black after clearing with chloral hydrate, 24hr and (b) Chlorazol black after clearing with chloral hydrate, 72hr, and (c) Lactophenol acid fuchsin, 24hr, after the inoculation with B.cinerea suspension

Fig 13. B.cinerea: longitudinal section of fruit stem scar showing spores stained with (a) Chlorazol black after clearing with Chloral hydrate, 2hr, (decayed fruit), (b) Chlorazol black after clearing with Chloral hydrate, one month, (healthy fruit), (c) Lactophenol acid fuchsin, 72hr, after the inoculation with B.cinerea suspension

Fig 14. B.cinerea: cross tissue section of fruit outer pericarp showing spores and mycelium stained with (a) Chlorazol black after clearing with chloral hydrate, 72hr, (b) Lactophenol cotton blue, 24hr, after the inoculation with B.cinerea suspension
LIST OF ABBREVIATIONS

A.PDA = Potato dextrose agar amended with antibiotic
B = Botrytis
CMA = Corn meal agar
CP1 = Curing period one
In = Isolate overgrown by Botrytis
In.1 = Inoculum level one
KFJ = Kiwifruit juice
MA = Malt extract agar
MEA = Malt extract agar
μl = Microlitre
μm = Micrometre
NA = Nutrient agar
PDA = Potato dextrose agar
S = Botrytis overgrown commencing
SDW = Sterile distilled water
SDWT = Sterile distilled water amended with tween 20
UV = Ultraviolet
V.8 = Juice of eight different vegetables
LIST OF APPENDICES

APPENDIX 1

TABLES

Table 1. Inhibition zones (mm) around mycelial plugs of antagonists on petri dishes of PDA seeded with conidia of B. cinerea. Antagonists obtained from isolation petri dishes of collection one were incubated at 20°C

Table 2. Inhibition zones (mm) around mycelial plugs of antagonists on petri dishes of PDA seeded with conidia of B. cinerea. Antagonists obtained from isolation petri dishes of collection one were incubated at 5°C

Table 3. Inhibition zones (mm) around bacterial streaks of antagonists on petri dishes of PDA seeded with conidia of B. cinerea. Antagonists obtained from isolation petri dishes of collection one were incubated at 20°C

Table 4. Inhibition zones (mm) around mycelial plugs of antagonists on petri dishes of PDA seeded with conidia of B. cinerea. Antagonists obtained from isolation petri dishes of collection two were incubated at 20°C

Table 5. Inhibition zones (mm) around mycelial plugs of antagonists on petri dishes of PDA seeded with conidia of B. cinerea. Antagonists obtained from isolation petri dishes of collection two were incubated at 5°C
Table 6. Inhibition zones (mm) around bacterial streaks of antagonists on petri dishes of PDA seeded with conidia of *B. cinerea*. Antagonists obtained from isolation petri dishes of collection two were incubated at 20°C

Table 7. Inhibition zones (mm) around mycelial plugs of antagonists on petri dishes of PDA seeded with conidia of *B. cinerea*. Antagonists obtained from isolation petri dishes of collection two were incubated at 5°C

Table 8. Inhibition zones (mm) around mycelial plugs of antagonists on petri dishes of PDA seeded with conidia of *B. cinerea*. Antagonists obtained from isolation petri dishes of collection three were incubated at 20°C

Table 9. Inhibition zones (mm) around bacterial streaks of antagonists on petri dishes of PDA seeded with conidia of *B. cinerea*. Antagonists obtained from isolation petri dishes of collection three were incubated at 20°C

Table 10. Inhibition zones (mm) around mycelial plugs of antagonists on petri dishes of PDA seeded with conidia of *B. cinerea*. Antagonists obtained from isolation petri dishes of collection four were incubated at 20°C

Table 11. Inhibition zones (mm) around bacterial streaks of antagonists on petri dishes of PDA seeded with conidia of *B. cinerea*. Antagonists obtained from isolation petri dishes of collection four were incubated on 20°C
APPENDIX 2

TABLES

Table 1a. Number of infected fruit / tray with fruit immediately inoculated and stored over 13 weeks at 0°C 128

Table 1b. Number of infected fruit / tray with fruit immediately inoculated, cured 2d at ambient temperature (8-12°C) and stored over 13 weeks at 0°C 128

Table 1c. Number of infected fruit / tray with fruit cured 2d at ambient temperature, inoculated and stored over 13 weeks at 0°C 129

Table 1d. Number of infected fruit / tray with fruit cured 2d at ambient temperature, inoculated, cured a further 2d at ambient temperatures and stored over 13 weeks at 0°C 129