Growth, carcass characteristics and meat quality of heifers and steers born to beef-cross-dairy cows

A thesis presented in partial fulfilment of the requirements for the degree Master of Science in Animal Science

Massey University, Palmerston North, New Zealand

Lucy Wesley Coleman 2016
Abstract

In New Zealand, there is an increasing influence of dairy breeds in the production of beef. First-cross beef-cross-dairy cows have shown potential as beef breeding cows due to their greater milk yield than straight-bred beef cows. There have been few studies examining the finishing characteristics of the progeny of such cows. The objectives of this study were to investigate the effect of breed-cross on growth, carcass characteristics and meat quality attributes for progeny of beef and beef-cross-dairy cows grown in a New Zealand pastoral production system. This study also aimed to determine if there were differences in breed effects between heifers and steers.

Growth, carcass characteristics and the meat quality were assessed for steers and heifers from beef and beef-cross-dairy cows. Heifers (n=53) and steers (n=50) were born to Angus (AA), Angus-cross-Friesian (AF), Angus-cross-KiwiCross (AK) and Angus-cross-Jersey (AJ) cows and sired by Charolais (C) bulls. Heifers and steers were grazed on pasture until slaughter at 574 and 784 days of age respectively. Live animal measurements were considered separately for heifers and steers. Carcass characteristics and meat quality attributes were compared among breed-crosses and between heifers and steers.

The C-AA heifers (226.8±4.7 kg) and steers (238.8±4.6 kg) were lighter at weaning than the beef-cross-dairy breed heifers (C-AJ = 239.9±4.6 kg, C-AK = 254.7±6.3 kg, C-AF = 258.9±5.7 kg) and steers (C-AJ = 256.1±4.9 kg, C-AK = 257.0±7.2 kg, C-AF = 267.0±5.7 kg) (P<0.05); however, there were no differences in the final live weight of breed-crosses (P>0.05). The C-AA (53.1±0.3 %) steers had a greater dressing-out percentage than C-AF (51.9±0.4 %) and C-AJ (51.5±0.3 %) steers (P<0.05). There were no differences in carcass weight, length, eye muscle area and fat depth C among breed-crosses (P>0.05). Steers were longer, heavier, had a greater fat depth C and greater proportion of intramuscular fat than heifers (P<0.05). Generally there was no difference in the meat quality among breed-crosses (P>0.05), except that C-AJ cattle had yellower fat than C-AA, and C-AA and C-AF cattle had redder fat than C-AK. There was no interaction of breed-cross with sex effects. Therefore, the C-AA cattle were more suited to a finishing system than C-AF, C-AK and C-AJ cattle.
Acknowledgements

I would first like to thank my supervisors Dr Rebecca Hickson and Dr Nicola Schreurs (Institute of Veterinary, Animal and Biomedical Sciences, Massey University) for their support, patience, advice and encouragement throughout this study. It would not have been possible without them.

I would also like to acknowledge the other members of the IVABS staff and postgraduates especially Stacey, Rhiannon, Isabel, Vanessa and Emma for their friendship, support, encouragement and motivation during particularly tense moments. To Dr Penny Back your encouragement, chocolate, chats and allowing me to visit the heifers when I got stressed were very much appreciated.

Special thanks to the staff at Massey University’s Tuapaka and Riverside farms, and technicians Dean Burnham, Geoff Purchas and Natalia Martin for weighing the cattle and taking measurements both on the live animals and at slaughter. I wish to acknowledge the staff at the Land Meat Whanganui processing plant, and Faye Yu for her assistance and company during the meat quality analysis.

I am extremely appreciative for the provision of funds in the form of the ADB Williams Trust scholarship, the Tararua Province of Federated Farmers scholarship, and the Leonard Condell farming postgraduate scholarship.

Ultimately I must thank my friends and flatmates for their confidence in me and for feeding and supporting me, and most importantly to my family for their unwavering support and advice, even when I pretend not to listen.
Table of Contents

Abstract ... i
Acknowledgements ... ii
Table of Contents ... iii
List of Tables ... vi
List of Figures ... viii

1. Review of Literature ... 9
 1.1. New Zealand Beef Industry .. 9
 1.1.1. Role of the New Zealand dairy Industry .. 9
 1.1.2. Carcass classification of beef in New Zealand 10
 1.2. Influence of breed and sex in beef production .. 11
 1.2.1. Beef breeds ... 11
 1.2.2. Dairy breeds for beef production .. 12
 1.2.3. Sex classifications in beef production .. 13
 1.3. Growth characteristics ... 15
 1.3.1. Influence of breed on growth characteristics .. 16
 1.3.2. Influence of sex classification and age on growth characteristics 16
 1.4. Carcass Characteristics ... 19
 1.4.1. Dressing-out percentage ... 19
 1.4.1.1. Influence of breed on dressing-out percentage 20
 1.4.1.2. Influence of sex classification and age on dressing-out percentage .. 21
 1.4.2. Eye Muscle Area ... 24
 1.4.2.1. Influence of breed on eye muscle area ... 24
 1.4.3. Subcutaneous Fat depth .. 26
 1.4.3.1. Influence of breed on subcutaneous fat depth 26
 1.4.4. Intramuscular Fat .. 27
 1.4.4.1. Influence of breed on intramuscular fat ... 29
 1.4.5. Influence of sex and age on carcass composition 29
 1.4.6. Carcass Conformation .. 30
 1.5. Meat Quality Characteristics .. 33
 1.5.1. Appearance ... 33
1.5.1.1. Meat Colour ... 33
1.5.1.2. Effect of breed on lean meat colour 34
1.5.1.3. Effect of sex and age on lean meat colour 34
1.5.1.4. Fat Colour .. 34
1.5.1.5. Influence of breed on fat colour 35
1.5.1.6. Influence of sex and age on fat colour 35
1.5.2. Palatability .. 36
1.5.2.1. Tenderness ... 36
1.5.2.2. Influence of breed on tenderness 37
1.5.2.3. Influence of sex and age on tenderness 38
1.5.2.4. Juiciness ... 39
1.5.2.5. Influence of breed, sex and age on juiciness 39
1.5.2.6. Flavour .. 40
1.5.2.7. Influence of breed, sex and age on flavour 40

1.6. Research Objectives ... 41

2. Materials and Methods .. 42
2.1. Animals and Management .. 42
2.2. Growth and ultrasound carcass measurements on the live animal. 43
2.3. Slaughter and carcass measurements 43
2.4. Meat quality .. 44
2.4.1. Ultimate pH .. 45
2.4.2. Lean meat and subcutaneous fat colour 45
2.4.3. Area and density ... 47
2.4.4. Tenderness and related measures 47
2.4.5. Water-holding measures .. 48
2.4.6. Intramuscular fat .. 49

2.5. Statistical Analysis ... 49

3. Results .. 51
3.1. Growth and ultrasound carcass characteristics 51
3.1.1. Heifers .. 51
3.1.2. Steers ... 54
3.2. Carcass characteristics .. 58
3.3. Meat quality ... 60
3.3.1. Ultimate pH ... 60
3.3.2. Tenderness and related attributes 60
3.3.3. Lean meat and subcutaneous fat colour 60
3.3.4. Water-holding measures .. 60

4. Discussion ... 60

4.1. Growth characteristics .. 62
4.2. Carcass characteristics .. 62
4.3. Meat Quality ... 65
4.4. Limitations ... 65
4.5. Implications ... 67
4.6. Future Research .. 67
4.7. Conclusions ... 68

Reference List ... 70
List of Tables

Table 1: Standard reference mature weights (kg) for different cattle breeds from et al. (2007), including whether the breed is early or late maturing

Table 2: Growth rate (as average daily gain (ADG), kg/day) from different sire breeds between two ages (months)

Table 3: Growth rate (ADG, kg/day) from different sex classes between two ages (months)

Table 4: Heritability ranges for carcass composition traits from (Irshad et al., 2013). Low = 0-0.25, moderate = 0.25-0.5, high = 0.5-1.

Table 5: Dressing-out percentage from different sire breeds at a range of ages (months)

Table 6: Dressing-out percentage from different sex classes at a range of ages (months)

Table 7: Eye muscle area (cm²) measured on the carcass at slaughter from different sire breeds at a range of ages (months)

Table 8: Subcutaneous fat depth C (mm) at slaughter among breeds at a range of ages (months)

Table 9: Eye muscle area (cm²) measured on the carcass at slaughter from different sex classes at a range of ages (months)

Table 10: Subcutaneous fat depth C (mm) at slaughter from different sex classes at a range of ages (months)

Table 11: Numbers of cattle utilised in the experiment within each breed-cross and sex group. Cattle were Charolais-sired (C-) from Angus (AA), Angus-cross-Friesian (AF), Angus-cross-KiwiCross (AK) and Angus-cross-Jersey (AJ) dams.

Table 12: Growth characteristics from weaning until slaughter, for Charolais (C-) sired heifers from Angus (AA), Angus-Friesian (AF), Angus-Kiwi (AK) and Angus-Jersey (AJ) cows. Values are least squares means ± standard error of the mean.

Table 13: Ultrasound carcass characteristics for Charolais (C-) sired heifers from Angus (AA), Angus-Friesian (AF), Angus-Kiwi (AK) and Angus-Jersey (AJ) cows, measured at 415 and 553 days of age. Values are least squares means ± standard error of the mean.
Table 14: Growth characteristics from weaning until slaughter, for Charolais (C-) sired steers from Angus (AA), Angus-Friesian (AF), Angus-Kiwi (AK) and Angus-Jersey (AJ) cows. Values are least squares means ± standard error of the mean. ... 56

Table 15: Ultrasound carcass characteristics for Charolais sired (C-) steers from Angus (AA), Angus-Friesian (AF), Angus-Kiwi (AK) and Angus-Jersey (AJ) cows, measured at 415, 553 and 723 days of age. Values are least squares means ± standard error. ... 58

Table 16: Carcass weight, dressing-out percentage, carcass length, eye muscle area (EMA) and fat depth C measured on the carcass at slaughter, and Longissimus lumborum muscle area and density measured during meat quality testing from Charolais sired (C-) heifers and steers from Angus (AA), Angus-Friesian (AF), Angus-Kiwi (AK) and Angus-Jersey (AJ) cows, slaughtered at 574 and 784 days old respectively. Values are least squares means ± standard error of the mean... 59

Table 17: Meat quality characteristics analysed on aged Longissimus lumborum muscle samples from Charolais sired (C-) heifers and steers from Angus (AA), Angus-Friesian (AF), Angus-Kiwi (AK) and Angus-Jersey (AJ) cows, slaughtered at 574 and 784 days old respectively. Values are least squares means ± standard error of the mean... 61
List of Figures

Figure 1: Proportions of different breeds making up the total New Zealand beef herd over the 2012-2013 season, numbers include stock kept for breeding and finishing stock (Beef + Lamb NZ, 2015a). .. 12

Figure 2: Composition of export beef (not including veal) production by sex class for the period 2013-14 and estimated values for the 2014-15 period (Beef + Lamb NZ, 2015b). Values expressed as percentage of total exported tonnes of beef as bone in carcass weight. .. 14

Figure 3: Body weight over age illustrating growth curves (a) from birth until weaning for Brahman bulls of three frame sizes, (b) from weaning until 20 or 32 months of age for males and females respectively, and (c) from 32 to 120 months of age for cows of three frame sizes. From Menchaca et al. (1996). 15

Figure 4: Differences between early and late maturing animals on the rate of increase in different fat depots, from Irshad et al. (2013). 27

Figure 5: Schematic of beef striploin (Longissimus lumborum) portioning for meat quality analysis. ... 46

Figure 6: Un-fasted live weight for Charolais sired (C-) heifers from Angus (AA), Angus-Friesian (AF), Angus-Kiwi (AK) and Angus-Jersey (AJ) cows from weaning at 193 days of age until three weeks prior to slaughter. Points are least squares means, with standard error bars. P-values are presented within the figure. 53

Figure 7: Body condition score for Charolais sired (C-) heifers from Angus (AA), Angus-Friesian (AF), Angus-Kiwi (AK) and Angus-Jersey (AJ) cows measured at 241, 302, 423 and 553 days of age. Points are least squares means, with standard error bars. P-values are presented within the figure. 53

Figure 8: Un-fasted live weight for Charolais (C-) sired steers from Angus (AA), Angus-Friesian (AF), Angus-Kiwi (AK) and Angus-Jersey (AJ) cows from weaning at 193 days of age until slaughter. Points are least squares means, with standard error bars. P-values are presented within the figure. 57

Figure 9: Body condition score for Charolais sired (C-) steers from Angus (AA), Angus-Friesian (AF), Angus-Kiwi (AK) and Angus-Jersey (AJ) cows measured at 241, 302, 423 and 553 days of age. Points are least squares means, with standard error bars. P-values are presented within the figure. 57