Nutritional characteristics of New Zealand export lamb and functional properties of selected beef forequarter muscles

A thesis presented in partial fulfilment of the requirements for the degree of Masters of technology in Bioprocess Engineering at Massey University, Palmerston North, New Zealand

Eion Jansen

2001
Abstract

Richmond Ltd. has recently undergone a change in strategy, away from the traditional commodity based meat industry, towards the modern food business. To do this, opportunities to add value to their current product range must be identified. This involves the conversion of traditionally low value commodity based products into products that demand a premium. An example of this is converting muscles that are currently used for grinding meat into a further processed convenience food (i.e. ready meals). Another method is to add further value to premium products by making them more appealing to consumers (i.e. nutritional information on labels). This work details investigations into the functional properties of selected beef forequarter muscles (low value commodity products) and the nutritional properties of selected export lamb products (premium products).

The functional properties of a number of beef forequarter muscles were measured to identify which had the best potential for further processing applications with respect to ready meals. The functional properties of tenderness, cook loss and shrinkage were measured for the Latissimus Dorsi, Pectoralis Profundus (Point End Brisket), Infraspinatus (Cross Cut Blade), Triceps Brachi Longhead (Main muscle in Bolar Shoulder Clod), Supraspinatus (Chuck Tender), Serratus Ventralis and Triceps Brachi Medialhead (Muscle in Bolar Shoulder Clod. From the tests conducted the Infraspinatus and the Triceps Brachi Longhead have been identified as having the best functional properties with respect to further processing for ready meal applications.

As well as conducting tests to identify the forequarter muscles with the best potential for further processing applications, investigations were carried out to identify cooking regimes that would optimise the functional properties. This work confirmed that there are three major chemical reactions, which determine the resultant functional properties of cooked meat. They are the denaturation and aggregation of the myofibrillar proteins and the denaturation and solubilisation of connective tissue (collagen). At around 50°C myosin (45% to 50% of the myofibrillar proteins) denatures, which results in a substantial increase in cook loss and reduction in water holding capacity. At around 60°C collagen (main connective tissue protein) denatures, which results in a substantial increase in tenderness and increase in cook loss. This is because as the collagen
denatures it loses its mechanical strength (increase in tenderness) and can no longer support its own structure, and causes it to contract. This contraction causes fluid within the meat and cook loss caused by the denaturation of myosin to be expelled from the meat by compressive forces (squeezed out). At around 70°C actomyosin (22% of the myofibrillar proteins) denatures. This results in a substantial increase in the cook loss and firming of the meat. The increase in cook loss or decrease in water holding capacity that occurs with myofibrillar protein denaturation is due to the fact that when these proteins denature and aggregate their ability to bind water is greatly reduced.

From the results of the cooking regime trials it is recommended that for functional property considerations that during the cooking of further processed meat products (i.e. ready meal applications) a meat temperature of 62°C should be aimed for, for the slowest heating region during cooking (usually the centre). This is because it has been identified that a cooking temperature of 65°C should not be exceeded otherwise detrimental effects can occur to the functional properties of the cooked meat.

For health concerns a 7D bacterial death reduction has to be achieved. This means that for a cooking temperature of 62°C the meat has to be held at this temperature for at least 5 minutes. Therefore the total cooking time would be the time needed to heat all the meat to 62°C plus 5 minutes to ensure a safe product. The heating or cooking system employed should also ensure that a minimal amount of the meat is heated above 65°C. This can be easily achieved by minimising the external cooking temperature, but long cooking times will result. An industrial cooking process will be a compromise between the cost associated with longer residence time and product functionality.

As mentioned earlier another way to add value is to supply nutritional information for selected cuts. Consequentially one of the objectives of this project was to provide some nutritional information for selected meat cuts. Though the primary objective of this part of the project was to develop a method for producing the needed information, so that Richmond N.Z. Ltd. can develop further information on an as needs basis.

The nutritional characteristics of a number of export lamb cuts from the saddle region has also been investigated and a method devised to allow further characterisation of
other cuts. The method involves breaking down a standard cut into its constituent components (e.g. Frenched rack consists of loin eye, fat cap, intercostals and fatty tissue). The constituent components are tested for their nutritional properties. The frenched rack nutritional properties are calculated from the nutritional properties of the constituents components and the yield data (percentage of each constituent component within a frenched rack) for frenched racks.

This method allowed the identification of the main sources of variation for nutritional characteristics. These differences were found to be caused by the lean to fat ratio, not nutritional differences in lean tissue from the same region of lamb (i.e. loin eye and tenderloin very similar nutritionally). The difference in lean to fat ration also accounts for the variation between grades (i.e. PX grade lamb cuts have a higher fat content than YX grade lamb cuts due to PX grade cuts having a higher percentage fat tissue in their cuts).

The cuts characterised were the shortloin section (whole section or chop), rack section (whole section or chop), 75mm racks frenched 25mm, boneless loin and tenderloin for both PX and YX grade lamb. The method will be applicable to other regions of lamb (i.e. hindquarter and forequarter) for which nutritional information already exists, but for which yielding data will have to be collected. The method would also be applicable to other species such as beef and venison, but both nutritional data for constituent components and yielding data would have to be collected.
Acknowledgments

I would like to thank the following

• Dr J.E. Bronlund and Dr B. Wilkinson for their supervision and guidance throughout the course of the project
• N. Smith and J. Cornish for their support and expertise given to the project, as well as their personal involvement which made my involvement with Richmond enjoyable and hassle free
• Dr R. Purchas for his technical input and making available the facilities in the meat research lab
• All the Richmond staff I dealt with who went out of their way to make me feel welcome whenever I was at one of the production plants, QC lab or head office
• Richmond and Technology New Zealand for their financial support which made this project possible
• Last but not least family and friends for their support and motivation, especially those friends who twisted my arm to extend my student life by at least a year, particularly Richard Edmonds and Nicola Young who continued twisting until I resubmitted.
Table Of Contents

ABSTRACT .. III

ACKNOWLEDGMENTS ... VI

TABLE OF CONTENTS .. VII

INDEX OF FIGURES .. XII

INDEX OF TABLES ... XIV

PROJECT OVERVIEW ..1-1

1.1 INTRODUCTION ...1-1

1.2 FUNCTIONAL PROPERTIES ..1-2

1.3 NUTRITIONAL PROPERTIES OF EXPORT LAMB ..1-3

1.4 STRUCTURAL ASPECTS OF MEAT ...1-4

LITERATURE REVIEW ..2-1

2.1 INTRODUCTION ...2-1

2.2 COLLAGEN ...2-1

2.2.1 Collagen structure ...2-1

2.2.2 Crosslinking and solubility ..2-2

2.2.3 Connective Tissue in Muscle ..2-3

2.2.4 Thermal denaturation of collagen ...2-4

2.2.5 Denaturation kinetics of collagen ...2-5

2.2.6 Thermal shrinkage ...2-7

2.3 MYOFIBRILLAR PROTEINS ...2-8

2.3.1 Muscle fibre type ...2-8

2.3.2 Major composition of myofibrillar proteins ...2-10

2.3.3 Thermal denaturation and gelation ...2-10

2.3.4 Denaturation kinetics ...2-13

2.3.5 Water holding capacity ...2-14

2.3.6 Emulsification ...2-15

2.4 COLOUR OF MEAT ...2-16

2.4.1 Meat colour ..2-16
2.4.2 Thermal denaturation of myoglobin ... 2-17
2.4.3 The kinetics of myoglobin denaturation ... 2-19
2.5 COOKING OF MEAT ... 2-19
2.5.1 Cooking effects ... 2-19
2.5.2 Textural changes ... 2-20
2.5.3 Cooking losses ... 2-20
2.5.4 Extended low temperature cooking times .. 2-22
2.6 CONCLUSIONS ... 2-22

FUNCTIONAL PROPERTIES OF BEEF FOREQUARTER MUSCLES 3-1

3.1 INTRODUCTION ... 3-1
3.2 CONCEPTUAL MODEL DEVELOPMENT ... 3-2
3.2.1 Introduction ... 3-2
3.2.2 Key factors effecting functional properties .. 3-2
 3.2.2.1 Collagen levels .. 3-3
 3.2.2.2 Collagen cross-linking ... 3-3
 3.2.2.3 pH .. 3-3
 3.2.2.4 Extent of protein denaturation ... 3-3
 3.2.2.5 Fibre length .. 3-4
 3.2.2.6 Ageing .. 3-4
 3.2.2.7 Interactions between meat properties .. 3-4
3.2.3 Conceptual model .. 3-6
3.3 POTENTIAL TO ADD VALUE .. 3-7
3.4 EXPERIMENTAL CHARACTERISATION OF BEEF FOREQUARTER FUNCTIONALITY ... 3-8
3.4.1 Muscle and carcass selection ... 3-8
3.4.2 Experimental methods for functionality testing 3-9
 3.4.2.1 Cooking .. 3-9
 3.4.2.2 Cooking losses .. 3-9
 3.4.2.3 Shrinkage .. 3-10
 3.4.2.4 Tenderness (Warner Bratzler Shear) .. 3-10
 3.4.2.5 pH .. 3-11
 3.4.2.6 Sarcomere length .. 3-11
 3.4.2.7 Collagen levels ... 3-11
3.4.3 Results .. 3-12
3.4.4 Data analysis ... 3-15
 3.4.4.1 Peak force (tenderness) ... 3-15
 3.4.4.2 Yield force ... 3-16
 3.4.4.3 Overall tenderness profile .. 3-17
3.4.4.4 Tenderness with animal variation removed .. 3-18
3.4.4.5 Cooking losses .. 3-24
3.4.4.6 Shrinkage .. 3-26
3.4.5 Summary of functional properties ... 3-28
3.5 POTENTIAL FOR ADDING VALUE .. 3-29
3.6 CONCEPTUAL MODEL VALIDATION .. 3-30
3.6.1 Peak force comparisons ... 3-31
3.6.2 Cook loss predictions .. 3-35
3.6.3 Shrinkage predictions .. 3-36
3.6.4 Overall conceptual model performance ... 3-37
3.7 CONCLUSIONS .. 3-37

THE EFFECT OF COOKING REGIME ON MEAT FUNCTIONALITY 4-1

4.1 INTRODUCTION .. 4-1
4.2 CONCEPTUAL MODEL DEVELOPMENT ... 4-2
 4.2.1 Myosin fraction .. 4-2
 4.2.2 Connective tissue fraction (collagen) ... 4-2
 4.2.3 Actomyosin fraction .. 4-3
 4.2.4 Cooking method ... 4-3
 4.2.5 Micro-organism death .. 4-3
 4.2.6 Conceptual Model .. 4-4
4.3 COOKING TRIAL DEVELOPMENT .. 4-5
 4.3.1 Sample preparation ... 4-6
 4.3.2 Heat rate during cooking trials ... 4-6
 4.3.2.1 Mathematical model .. 4-7
 4.3.2.2 Thermal properties .. 4-9
 4.3.2.3 Experimental center temperature .. 4-9
 4.3.3 Selection of meat strip thickness ... 4-10
4.4 TENDERNESS MEASUREMENTS .. 4-11
 4.4.1 Tensile strength .. 4-11
 4.4.1.1 Cooking regimes .. 4-11
 4.4.1.2 Testing procedure ... 4-12
 4.4.2 Warner Bratzler shear test .. 4-12
 4.4.2.1 Cooking regimes .. 4-12
4.5 COOK LOSS .. 4-13
4.6 RESULTS .. 4-13
4.6.1 *Cooking losses* ... 4-13
4.6.2 *Tensile strength* ... 4-18
4.6.3 *Warner Bratzler shear (tenderness)* 4-21
 4.6.3.1 Fibre orientation .. 4-21
 4.6.3.2 Tenderness (parallel fibre orientation) 4-21
 4.6.3.3 Qualitative observations .. 4-24
 4.6.3.4 Comparison to literature results 4-25
4.6.4 *Bacterial death kinetics* ... 4-28
4.7 *Optimal cooking regime* .. 4-29

NUTRITIONAL PROPERTIES OF EXPORT LAMB 5-1

5.1 *Introduction* .. 5-1
5.2 *USDA labelling guidelines* .. 5-2
 5.2.1 Compliance levels ... 5-3
 5.2.2 Recommended analytical methods 5-3
5.3 Nutrient information available in the literature 5-4
5.4 *Factors affecting nutritional values* 5-6
 5.4.1 Meat cut ... 5-6
 5.4.2 Sex class ... 5-6
 5.4.3 Age .. 5-7
 5.4.4 Seasonal and geographical variations 5-7
5.5 *Methods used for analytical analysis* 5-7
 5.5.1 Proximate composition ... 5-7
 5.5.2 Calories ... 5-7
 5.5.3 Mineral analysis ... 5-8
 5.5.4 Vitamin analysis .. 5-8
 5.5.4.1 Vitamins A,C,E .. 5-8
 5.5.4.2 B-Group vitamins ... 5-8
 5.5.5 Saturated fat analysis .. 5-10
5.6 *Sample collection* ... 5-10
 5.6.1 Nutritional information ... 5-11
 5.6.2 Nutritional values for lean, adipose and intercostal tissue 5-16
 5.6.3 Yielding information .. 5-19
5.7 Sources of variability in nutritional levels 5-22
5.8 Nutritional values of selected lamb cuts 5-24
5.8.1 Nutritional information to include on label ... 5-27
5.8.2 Nutritional Values via Proximate Composition 5-28
5.9 Nutritional Data for Other Regions of Lamb .. 5-29
5.10 Conclusion .. 5-31

CONCLUSIONS AND RECOMMENDATIONS .. 6-1

6.1 Introduction ... 6-1
6.2 Beef Forequarter Functionality .. 6-1
 6.2.1 Tenderness .. 6-1
 6.2.2 Cook loss ... 6-2
 6.2.3 Shrinkage ... 6-2
6.3 Functionality as Affected by Cooking Regime .. 6-2
 6.3.1 Tenderness .. 6-2
 6.3.2 Cooking losses ... 6-3
6.4 Optimal Cooking ... 6-3
6.5 Nutritional Properties of Export Lamb ... 6-4

REFERENCES ... 7-1

APPENDIX ... 8-1

8.1 List of Products: .. 8-1
8.2 List of Attached Files ... 8-1
8.3 Document Statistics ... 8-3
Index of figures

Figure 1.1: Diagram of muscle structure showing the arrangement of the connective tissue in relation to muscle fibres and muscle fibre bundles........1-5

Figure 1.2: Diagram of the ultrastructural organisation of the muscle sarcomere bounded on each side of a Z-line. Underneath the sarcomere, from left to right, are cross-sectional representations of the organization of (I) the thin filaments near the Z-line, (II) the overlap regions of the thick and thin filaments, (III) the thick filaments, and (IV) the M-line in the centre of the sarcomere. ..1-6

Figure 2.1: Denaturation kinetics of collagen...2-6

Figure 2.2: Denaturation kinetics of actomyosin constructed from data from (Wagner and Acton 1985) and (Martens et al. 1982). ..2-14

Figure 2.3: Kinetics of myoglobin denaturation constructed from (Geileskey et al. 1998)..2-19

Figure 3.1: Graph showing the ranking of muscle types from peak force measurements for each animal. ...3-16

Figure 3.2: The variation of yield force between forequarter muscles for each animal (note the order of muscle type is that of ranking based on peak force). ...3-17

Figure 3.3: Average tenderness scores for each muscle type with SE bars. 3-18

Figure 3.4: Peak force with the carcass to carcass variation removed (N=kg’S). ...3-20

Figure 3.5: Yield force with the carcass to carcass variation removed (N=kg’S). ...3-23

Figure 3.6: Cooking losses in various forequarter muscles for each animal studied. ...3-24

Figure 3.7: Cook loss with carcass to carcass variation removed.........................3-25

Figure 3.8: Average shrinkage value for each muscle type.........................3-26

Figure 3.9: Shrinkage values with carcass to carcass variation removed...3-28
FIGURE 4.1: FRACTION PROTEIN DENATURATION AFTER 60 MINUTES COOKING TIME FOR VARIOUS COOKING TEMPERATURES

FIGURE 4.2: CENTRE TEMPERATURE OF MEAT STRIPS OF VARYING THICKNESS, COMPARISON OF EXPERIMENTAL DATA AND CALCULATED HEAT TRANSFER RATES (INFINITE 2 DIMENSIONAL SLAB OF THICKNESS’ 2R HEAT TRANSFER MODEL).

FIGURE 4.3: COOKING LOSS VERSUS TIME FOR INFRAISPINATUS.

FIGURE 4.4: COOK LOSS VERSUS TIME FOR TRICEPS BRACHI LONGHEAD.

FIGURE 4.5: PARALLEL AND PERPENDICULAR FIBRE ORIENTATION COOK LOSSES.

FIGURE 4.6: COOK LOSS VERSUS TEMPERATURE (60 MINUTES COOKING TIME).

FIGURE 4.7: GRAPH OF PROTEIN DENATURATION AND COOK LOSS.

FIGURE 4.8: TENSILE STRENGTH FOR VARIOUS COOKING TIMES WITH SE BARS.

FIGURE 4.9: TYPICAL FORCE VERSUS DISTANCE (TIME) GRAPHS FOR TENSILE STRENGTH OF MEAT STRIPS COOKED AT DIFFERENT TEMPERATURES.

FIGURE 4.10: TENDERNESS PROFILE AS AFFECTED BY TEMPERATURE (PARALLEL FIBRE ORIENTATION).

FIGURE 4.11: TENDERNESS AND DENATURATION COMPARISON.

FIGURE 4.12: SHEAR VERSUS TEMPERATURE AFTER COOKING.

FIGURE 4.13: BACTERIAL DEATH KINETICS.
Index of tables

TABLE 2.1 DENATURATION KINETICS OF MYOFIBRILLAR PROTEINS, FROM (WAGNER AND ANON 1985). ... 2-13

TABLE 3.1 AVERAGE FUNCTIONAL AND COMPOSITIONAL PROPERTIES OF BEEF FOREQUARTER MUSCLES FOR THE TEN SELECTED CARCASSES (4 FOUR COLLAGEN). ... 3-13

TABLE 3.2 MEAN PEAK FORCE WITH CARCASS VARIATION REMOVED. 3-19

TABLE 3.3 OUTPUT FOR STATISTICAL ANALYSIS OF PEAK FORCE. 3-19

TABLE 3.4 MEAN YIELD FORCE WITH CARCASS VARIATION REMOVED. 3-22

TABLE 3.5 OUTPUT FOR STATISTICAL ANALYSIS OF YIELD FORCE. 3-22

TABLE 3.6 COOK LOSSES WITH CARCASS VARIATION REMOVED. 3-25

TABLE 3.7 OUTPUT FOR STATISTICAL ANALYSIS OF COOK LOSS. 3-26

TABLE 3.8 MEAN SHRINKAGE VALUES WITH CARCASS VARIATION REMOVED. 3-27

TABLE 3.9 OUTPUT FOR STATISTICAL ANALYSIS OF SHRINKAGE. 3-27

TABLE 3.10 FUNCTIONAL PROPERTIES RANKING (RANKED IN ASCENDING ORDER). .. 3-28

TABLE 3.11 PROCESS RANKING FOR THE SELECTED FOREQUARTER MUSCLES AFTER WEIGHTING FACTORS APPLIED (LOWER SCORE EQUALS A HIGHER VALUE MUSCLE). 3-30

TABLE 3.12 MODEL DIFFERENCES FOR PEAK FORCE (KG). 3-32

TABLE 3.13 MODEL COMPARISON FOR COOK LOSS.. 3-35

TABLE 4.1 TENDERNESS RANKING COMPARISON TO LITERATURE TENDERNESS RANKINGS. RANKED IN DESCENDING ORDER. .. 4-27

TABLE 4.2 BACTERIAL DEATH KINETICS (SHADED VALUES ARE EXTRAPOLATED)... 4-29

TABLE 4.3 COMPARISON OF COOKING YIELD AND BACTERIAL DEATH TIMES. 4-30

TABLE 5.1 MANDATORY NUTRIENTS THAT MUST BE DECLARED ON FOOD LABEL...... 5-2

TABLE 5.2 BENEFICIAL NUTRIENTS FOR MEAT PRODUCTS (VOLUNTARILY LABELLED). 5-3

TABLE 5.3 COMPARISON OF NUTRITIONAL VALUES OF LEAN TISSUE FROM LOIN REGION OF LAMB, ALL PER 100G (‘-‘ REPRESENTS DATA NOT REPORTED). 5-4
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 5.4</td>
<td>RDI Comparison of Nutritional Values of Lamb Lean Loin Tissue per 100g (USDA RDI Levels)</td>
<td>5-6</td>
</tr>
<tr>
<td>Table 5.5</td>
<td>Example of Yielding Constituent Components</td>
<td>5-11</td>
</tr>
<tr>
<td>Table 5.6</td>
<td>Proximate Composition of Constituent Components</td>
<td>5-13</td>
</tr>
<tr>
<td>Table 5.7</td>
<td>Mineral Composition of Constituent Components</td>
<td>5-13</td>
</tr>
<tr>
<td>Table 5.8</td>
<td>Lipid Composition of Constituent Components</td>
<td>5-14</td>
</tr>
<tr>
<td>Table 5.9</td>
<td>Niacin Composition of Constituent Components</td>
<td>5-15</td>
</tr>
<tr>
<td>Table 5.10</td>
<td>Comparison of Current Study and USDA Database for Lean Loin Tissue</td>
<td>5-17</td>
</tr>
<tr>
<td>Table 5.11</td>
<td>Nutritional Values of the Constituent Components</td>
<td>5-18</td>
</tr>
<tr>
<td>Table 5.12</td>
<td>Constituent Components Yielded from the Selected Cuts</td>
<td>5-19</td>
</tr>
<tr>
<td>Table 5.13</td>
<td>Yielding Data for PX Grade Lamb</td>
<td>5-21</td>
</tr>
<tr>
<td>Table 5.14</td>
<td>Yielding Data for YX Grade Lamb</td>
<td>5-22</td>
</tr>
<tr>
<td>Table 5.15</td>
<td>PX Grade Lamb Nutritional Values for Selected Products</td>
<td>5-24</td>
</tr>
<tr>
<td>Table 5.16</td>
<td>YX Grade Lamb Nutritional Values for Selected Products</td>
<td>5-25</td>
</tr>
<tr>
<td>Table 5.17</td>
<td>PX Grade Rack Section Nutritional Values, Expected, Minimum or Maximum Amount Allowed for Compliance to USDA Label Claim and Critical Level (99% Confidence Level Limit for Fat:Lean Tissue Ratio)</td>
<td>5-26</td>
</tr>
<tr>
<td>Table 5.18</td>
<td>Tenderloin or Boneless Loin Nutritional Values</td>
<td>5-28</td>
</tr>
<tr>
<td>Table 5.19</td>
<td>Comparison of Nutrients on Protein and Fat Basis from Different Tissues</td>
<td>5-29</td>
</tr>
<tr>
<td>Table 5.20</td>
<td>Nutritional Values for Lean Tissue from Other Regions of Lamb</td>
<td>5-30</td>
</tr>
<tr>
<td>Table 6.1</td>
<td>Nutritional Properties of YX and PX Grade Rack Section</td>
<td>6-6</td>
</tr>
</tbody>
</table>