Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Capturing Event metadata in the sky:
A Java-based application for receiving astronomical
Internet Feeds

A thesis presented in partial fulfilment of the requirements for the degree of
Master of Computer Science
in
Computer Science
at Massey University, Auckland,
New Zealand.

Feng Jiang
2008
Acknowledgements

I wish to express my sincere thanks to my research supervisor, Dr. Ian Bond, for providing me this opportunity and many thanks for your kind helps.

Thanks for your invaluable support and patient guidance throughout this journey.
Abstract

When an astronomical observer discovers a transient event in the sky, how can the information be immediately shared and delivered to others? Not too long time ago, people shared the information about what they discovered in the sky by books, telegraphs, and telephones. The new generation of transferring the event data is the way by the Internet. The information of astronomical events is able to be packed and put online as an Internet feed. For receiving these packed data, an Internet feed listener software would be required in a terminal computer. In other applications, the listener would connect to an intelligent robotic telescope network and automatically drive a telescope to capture the instant Astrophysical phenomena. However, because the technologies of transferring the astronomical event data are in the initial steps, the only resource available is the Perl-based Internet feed listener developed by the team of eSTAR. In this research, a Java-based Internet feed listener was developed. The application supports more features than the Perl-based application. After applying the rich Java benefits, the application is able to receive, parse and manage the Internet feed data in an efficient way with the friendly user interface.

Keywords: Java, socket programming, VOEvent, real-time astronomy
Table of Contents

ACKNOWLEDGEMENTS ... 1

ABSTRACT ... 2

1. INTRODUCTION .. 5

1.1 A brief Introduction to the astronomical phenomena ... 5

1.2 Introduction the way to deliver instant astronomical event information 8

1.3 Introduction to current observation works ... 11

2. BACKGROUND .. 13

2.1 A closer look at VOEvent .. 13

 2.1.1 History of VOEvent .. 13

 2.1.2 Structure of a typical VOEvent message ... 14

 2.1.3 Schema of the VOEvent .. 18

 2.1.4 Current Uses of VOEvent .. 19

2.2 Review existing applications ... 20

 2.2.1 Event broker application ... 20

 2.2.2 Existing RSS news aggregators .. 21

2.3 Java application on the Internet .. 22

3. PROJECT DEVELOPMENT ... 24

3.1 Requirements collections and analysis ... 24

3.2 Application Architecture Design .. 25

 3.2.1 Architecture with UML ... 27

 3.2.2 The real-time listener architecture ... 29

 3.2.3 The RSS/XML reader architecture ... 32

 3.2.4 The comparision between the RSS/XML reader model and the real-time listener model 34

3.3 Application Functional Design ... 35

 3.3.1 Main form designs ... 35

 3.3.2 Server setting form designs .. 38

 3.3.3 Real-time Model Designs ... 39

 3.3.3.1 Connecting ... 41

 3.3.3.2 Listening .. 41
3.3.3.3 Responding
3.3.3.4 Parsing
3.3.3.5 Displaying
3.3.3.6 Recording
3.3.3.7 Thread technique for the time critical programming
3.3.4 RSS Model Designs

4. PROJECT DEPLOYMENT

4.1 Enterprise application deployment
4.2 Java Web Start Deployment

5. PROJECT PERFORMANCE

5.1 Multiple resource listening
5.2 Real-time parsing time cost
5.3 RSS reader parsing time cost
5.4 Validation check time cost
5.5 Parsing method designs

6. CONCLUSION

7. FUTURE WORK

REFERENCES