Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
The Spectroscopic Analysis of Di-copper Helicates as Receptors for Encapsulating Anions

A thesis presented in partial fulfilment of the requirements for the degree of

Master of Science in Chemistry at Massey University, Palmerston North, New Zealand.

Quintin Wayne Knapp

2009
Abstract

The application of neutral dicopper helicates to the encapsulation of a number of anions was investigated. Two dicopper salen derived helicates were studied which contained phenolic and either iminophenyl (1) or oxime (2) donor groups. UV-visible spectroscopy was used to determine the binding stoichiometry and formation constants of the anion complexes. Complex binding was supported by electrospray ionisation mass spectrometry. Receptor 1 possessed a remarkable selectivity for sulfate in isopropanol (IPA) for which a log K value of 5.07 ± 0.24 was obtained. Receptor 2 bound all anions studied more strongly than 1. Crystal structural data supports the proposition that there is a steric barrier to contraction of 1 from the bulky iminophenyl groups. Receptor 2 was not restricted by the small oxime moieties allowing for optimum copper-anion interactions.
Acknowledgements

I would like to extend my gratitude to my supervisor Dr. Paul Plieger whose advice and encouragement throughout this project I could not have done without. His continued support and patience with my endless questions has been greatly appreciated. I would also like to thank my wife Katie. Without her love and continued support throughout the last two years this thesis would never have come to fruition.
Contents

Abstract ...i
Acknowledgements ..ii
Contents ..iii
List of Figures ..vii
List of Tables ...xi
Abbreviations ...xii

Chapter One

Introduction

1.1 Anion Binding Systems ...1
 1.1.1 Anion Background ... 1
 1.1.2 Anion Receptors ... 2

1.2 Analysis and Evaluation of Anion Receptor Systems ... 7
1.3 Project Objectives .. 11

Chapter Two

Titrations of \([\text{Cu}_2(\text{L}^{\text{1}-2\text{H}})_2]\)

2.1 Introduction ... 13
2.2 Results and Discussion .. 14
 2.2.1 Absorption Spectra of \(\text{1}\) ... 14
 2.2.2 Sulfuric Acid Titration of \(\text{1}\) .. 17
 2.2.3 Acid Titrations of \(\text{1}\) ... 19
 2.2.4 Phosphate encapsulation within \(\text{1}\) .. 24
 2.2.5 Effect of Protonation of \(\text{1}\) on Anion Binding .. 26
2.2.6 Colourimetric Sensor Ability of 1 Upon Anion Binding..28
2.2.7 Conductivity of $\text{I} \cdot \text{SO}_4$, $\text{I} \cdot \text{ClO}_4$ and $\text{I} \cdot \text{BF}_4$ in Nitromethane.................................29
2.2.8 X-Ray Crystal Structure of $[\text{I} \subset \text{I} \cdot \text{H}_4] \cdot \text{BF}_4 \cdot \text{I}_2$..31
2.2.9 Summary ...33

2.3 Experimental ...34
 2.3.1 Materials and Reagents ..34
 2.3.2 Spectrophotometric Titrations ..34
 2.3.3 Method of Continuous Variation ..35
 2.3.4 Solution Preparation ..35
 2.3.5 Reliability of Standard Solutions ..36
 2.3.6 Conductivity Measurements ...36
 2.3.7 Synthesis of $[\text{I} \subset \text{I} \cdot \text{H}_4] \cdot \text{BF}_4 \cdot \text{I}_2$..36

Chapter Three Titrations of $[\text{Cu}_2(\text{L}^2 \cdot 2\text{H})_2]$ 37

3.1 Introduction ...37
3.2 Results and Discussion ...39
 3.2.1 Absorption Spectra of 2 ..39
 3.2.2 Sulfuric Acid Titration of 2 ..41
 3.2.3 Base Titrations of 2.$$\text{SO}_4$...42
 3.2.4 Acid Titrations of 2 ...44
 3.2.5 Large Scale Titration of the Tetrafluoroborate Encapsulated Complex46
 3.2.6 Reaction of Hydrochloric Acid with 2 ..46
 3.2.7 Colourimetric Sensor Ability of 2 Upon Anion Binding49
 3.2.8 Summary ...49

3.3 Experimental ...51
 3.3.1 Materials and Reagents ..51
 3.3.2 Spectrophotometric Titrations ..51
 3.3.3 Method of Continuous Variation ..51
 3.3.4 Solution Preparation ..52
 3.3.5 $[\text{BF}_4 \subset \text{Cu}_2 \text{L}^2][(\text{BF}_4)_3 (2 \cdot \text{BF}_4)]$ Synthesis via the Free Base52
Chapter Four
Assessment of Anion Binding

4.1 Results and Discussion ... 53
 4.1.1 Trends in Binding Between the Helicates 1 and 2 53
 4.1.2 Interpretation of the Differences in Binding Between the Helicates 1 and 2 ... 55
 4.1.3 Summary of the anion binding between 1 and 2 60

4.2 Experimental ... 60
 4.2.1 Materials and Reagents ... 60
 4.2.2 Spectrophotometric Titrations .. 60
 4.2.3 Solution Preparation .. 61

Chapter Five
Conclusions and Future Work

5.1 Conclusions .. 63
5.2 Applications .. 65
5.3 Future Endeavours .. 65

Chapter Six
Synthesis of Ligands and Complexes

6.1 General Procedures .. 67
6.2 Ligand Synthesis .. 68
6.3 Complex Synthesis ... 70
 6.3.1 Cu₂(L₁-2H)₂ (1) Synthesis .. 70
 6.3.2 [BF₄⊂Cu₂L₂₁(BF₄)₃ (1.BF₄) Synthesis 70
 6.3.3 [SO₄⊂Cu₂L₂₁SO₄ (1.SO₄) Synthesis 71
 6.3.4 [ClO₄⊂Cu₂L₂₁(ClO₄)₃ (1.CLO₄) Synthesis 71
 6.3.5 Cu₂(L²-2H)₂ (2) Synthesis .. 71
 6.3.6 [BF₄⊂Cu₂L₂²(BF₄)₃ (2.BF₄) Synthesis 72
 6.3.7 [SO₄⊂Cu₂L₂²SO₄ (2.SO₄) Synthesis 72

Appendix A

Beginners Guide to SPECFIT/32 ... 73
Appendix B

Recorded UV-Visible Spectra for Acid Addition to [Cu₂(L¹-2H)₂] 79

Isopropanol Titration Medium... 79

50%(v/v) 1,2-Dichloroethane/Isopropanol Titration Medium................................. 84

Recorded UV-Visible Spectra for Acid Addition to [Cu₂(L²-2H)₂] 86

50%(v/v) 1,2-Dichloroethane/Isopropanol Titration Medium................................. 86

References

References
List of Figures

Figure 1. Anslyn and co-workers’ copper complex. ... 3
Figure 2. Kwon and Jeongs’ phosphate receptor. ... 3
Figure 3. Uranyl complexes I and II of Cametti et al. ... 4
Figure 4. Solid state structure of the uranyl complex III of Cametti et al. Uranyl bound methanol has been omitted in order to display the binding cavity. 4
Figure 5. The ligand of Tasker and his colleagues and the ligand binding a cation and anion simultaneously. ... 4
Figure 6. Helicate ligand used by Tasker et al. ... 5
Figure 7. Copper helicate with encapsulated BF$_4^-$.. 5
Figure 8. Solid state structure of Steel and McMorrans’ helicate with encapsulated hexafluorophosphate ion. ... 7
Figure 9. The ligand utilised by Plieger et al. and within this study. Referred to as L1 throughout this text. ... 14
Figure 10. Proposed structure of 1 used in the UV-visible titrations in this chapter. 14
Figure 11. UV-Visible absorbance spectra of 1 in IPA. The band at 405 nm is characteristic of the phenolate π to π_1^* electron transition. ... 16
Figure 12. Recorded UV-visible titration spectra of 1 upon titration of up to two equivalents of H$_2$SO$_4$. Each spectrum corresponds to the addition of 0.1 equivalences. Arrows indicate relative intensity changes. ... 18
Figure 13. Predicted molar absorptivity spectra of the 1:sulfate adduct (red) and of 1 (black). ... 18
Figure 14. Recorded UV-visible titration spectra of 1 upon titration of up to six equivalents of HI. Each spectrum corresponds to the addition of 0.5 equivalences.
Arrows indicate relative intensity changes. The molar absorbance of HI is overlaid in blue (dashed, right axes). .. 20

Figure 15. Method of continuous variation applied to the acids titrated against 1. The absorbance was recorded at the phenolate absorption peak ... 21

Figure 16. The ESI-MS of attempted [Cl⊂H4]3+ synthesis. From left to right, the peaks are representative of [(L1-H)Cu2Cl2]+, [L1Cu2Cl3]- and [(L1+H)Cu2Cl4.MeCN]+21

Figure 17. L3 ligand used by Forgan and Plieger. L3 is similar to L2 but with benzyl groups in place of the methyl groups on the amines and only 5 methylene groups in the alkyl linker chain .. 22

Figure 18. Crystal structure of L3Cu2Cl4 produced by Forgan and Plieger. It shows the binding of copper(II) chloride to each salicylaldimine moiety of L3 23

Figure 19. The calculated stability constants for anions binding within the cavity of 1 as a function of anion volume. The anion volumes used are taken from the paper by Jenkins et al ... 23

Figure 20. Recorded UV-visible titration spectra of 1 upon titration of up to one equivalence of H3PO4. Each spectrum corresponds to the addition of 0.2 equivalents. Arrows indicate relative intensity changes .. 24

Figure 21. Recorded UV-visible titration spectra of 1 upon titration of two to five equivalences of H3PO4. Each spectrum corresponds to the addition of 0.5 equivalents. Arrows indicate relative intensity changes .. 25

Figure 22. Recorded UV-visible titration spectra of 1 upon titration of up to two equivalents of TBAH2PO4. Each spectrum corresponds to the addition of a 0.25 equivalence of acid. Arrows indicate relative intensity changes .. 26

Figure 23. IPA solutions of 1 in the presence of the acids studied in this chapter. From left to right the solutions are; 1 only, 1+HCl, 1+HBr, 1+HNO3, 1+HBF4, 1+HClO4, 1+H3PO4 and 1+SO4. Concentration of 1 is 360 μmol L⁻¹ and acids are present at 100 equivalents ... 29

Figure 24. Molar conductivity plotted against concentration revealed a sharp increase in molar conductivity at low concentrations of complex. This behaviour is typical of weak electrolytes .. 31

Figure 25. Solid state structure of [I⊂H4]BF4I2 .. 32

Figure 26. The 14-membered pseudo-macrocyclic structure formed by salicylaldoxime ligands ... 37

Figure 27. The ligand L2 used to produce the free base complex 2.................................. 38
Figure 28. The helicate (2) formed between \(\text{L}^2 \) and copper(II) acetate and used in the UV-visible titrations. ... 38

Figure 29. UV-Visible absorbance spectra of 2 in 50% DCE-IPA. The broad band at 343 nm is characteristic of the phenolate moiety. ... 40

Figure 30. Copper co-ordination environment of 2. .. 41

Figure 31. Recorded UV-visible titration spectra of 2 with up to two equivalents of \(\text{H}_2\text{SO}_4 \). Each spectrum corresponds to addition of 0.25 equivalences. The arrow indicates the intensity change. .. 42

Figure 32. Recorded spectra of the sulfuric acid titration of 2 to six equivalents of added acid. Each spectrum corresponds to addition of 0.25 equivalences. Arrows indicate relative intensity changes. .. 42

Figure 33. Recorded spectra of six equivalents of hydroxide to a solution of 2.SO_4. Arrows indicate relative intensity changes. .. 43

Figure 34. Structure of 1,8-diazabicyclo[5.4.0]undec-7-ene or DBU used to deprotonate the 2.SO_4 complex. .. 44

Figure 35. Method of continuous variation of acids titrated against 2 recorded at the phenolate absorption peak. .. 45

Figure 36. Expanded view of the assigned copper(II) chloride visible absorbance band. Taken from the UV-visible titration spectra of 2 with up to ten equivalents of HCl. Each spectrum corresponds to addition of 0.25 equivalences. The arrows indicate the relative intensity change. .. 45

Figure 37. Expanded view of the same wavelength range from the UV-visible titration spectra of 2 with up to ten equivalents of HBF_4. Each spectrum corresponds to addition of 0.25 equivalences. The arrow indicates the relative intensity change. .. 45

Figure 38. Predicted formation of \(\text{L}^2\text{Cu}_2\text{Cl}_4 \) species as a function of hydrochloric acid equivalents. Formation based of the model fit with SPECFIT/32™ using the data obtained from the titration of 2 with hydrochloric acid in 50% DCE-IPA. .. 48

Figure 39. DCE-IPA solutions of 2 in the presence of the acids studied in this chapter. From left to right the solutions are: 2 only, 2+HCl, 2+HBr, 2+HNO_3, 2+HI, 2+HBF_4, 2+HClO_4, 2+H_3PO_4 and 2+H_2SO_4. The concentration of 2 is 349 \(\mu \text{mol L}^{-1} \) and acids are present at 100 equivalents. .. 49

Figure 40. The calculated stability constants for anions binding within the cavity of 2 as a function of anion size. Error bars represent one standard deviation of the values obtained. Anion volumes are taken from the paper by Jenkins et al. .. 50
Figure 41. The determined anion stability constants of 1 in IPA and 2 in 50% DCE-IPA as a function of the anion volumes. The anion volumes used are taken from the paper by Jenkins et al. ... 54
Figure 42. The determined anion stability constants of 1 in IPA, 2 in 50% DCE-IPA and 1 in 50% DCE-IPA as a function of the anion volumes. Anion volumes are taken from the paper by Jenkins et al. .. 55
Figure 43. Copper square planar environment of [BF₄⊂₂H₄](BF₄)₃. The oxime groups stabilise the copper centre by hydrogen bonding to the phenolate oxygen atoms. 56
Figure 44. a. Solid state structure of [BF₄⊂₁H₄]³⁺. b. Enlargement of the distorted trigonal bipyramidal environment formed upon weak interaction with the copper centre of the BF₄⁻ anion. .. 57
Figure 45. Solid state structure of the freebase helicate [Cu₂(L²-2H)₂]. Full extension of the alkyl straps results in a Cu···Cu distance of 10.191(3) Å... 58
Figure 46. Solid state structure of [NO₃⊂₁H₄]³⁻. The two amine-phenolate hydrogen bonds and the two amine-nitrate hydrogen bonds are shown (dashed, turquoise)........ 59
Figure 47. The precursor for ligand L¹ and L²... 68
Figure 48. L¹ .. 69
Figure 49. L² .. 69