Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
UTILIZATION OF SWEET POTATO STARCH, FLOUR AND FIBRE IN BREAD AND BISCUITS: PHYSICO-CHEMICAL AND NUTRITIONAL CHARACTERISTICS.

by

Anton Mais

A thesis submitted in partial fulfilment of the requirements for the degree of

Master of Technology in Food Technology

Massey University

2008
SUMMARY

UTILIZATION OF SWEET POTATO STARCH, FLOUR AND FIBRE IN BREAD AND BISCUIT: PHYSICOCHEMICAL AND NUTRITIONAL CHARACTERISTICS.

Sweet-potato contains a limited amount of protein, although rich in dietary fibre content and carbohydrate, so a successful combination with wheat flour for bread and biscuit production would be nutritionally advantageous. In particular, the role of these ingredients in relating to acceptability of breads and biscuit with higher percentage of sweet potato starch, flour in wheat flour. In this study, starch, flour and residue fibre of three sweet-potato varieties (red, orange and white -types) were studied. The 5-10% combination levels for biscuit-making were found to be acceptable, without affecting the quality of the biscuit (combination of texture and biscuit size). In bread, bread containing 15% red and white replacement starches and orange replacement flour was found to be acceptable level, without affecting the quality of the bread, in an attempt to replace wheat at higher per cent level. The physicochemical study was complemented with a nutritional study to determine beneficial effects of food rich in dietary fibre and starches, in the context of improving diet related problems. RVA results showed sweet-potato ingredients affected differently the pasting temperature, peak viscosity and final viscosity of the normal wheat flour (p<0.05). Fibre inclusion showed large reduction in viscosity and swelling of sweet potato starch. Biscuits and breads containing sweet-potato starch and flour are low in amylose, and digest slowly because of lowly oriented and ‘crystalline’ areas within the granules enable to swell or to ungelatinised starch granules, whereas wheat control biscuit was able to gelatinised starch and exerted a greater effect upon digestibility. There are many other factors that need to be considered when analysing the in vitro starch digestibility such including amylose content, amylopectin structure and presence of fibre and gelatinising. Sweet-potato starch, flour and fibre addition show least effect on bread texture and size and starch, flour and fibre replacement. However, in in vitro starch digestibility test higher values RSS was recorded for starch addition followed by flour addition.
Table of Contents

Chapter 1
Introduction

1.1 Literature review

1.2 Nutritional quality of Sweet potato

1.3 Some major components of sweet potato

 1.3.1 Carbohydrate
 1.3.2 Fibre content
 1.3.3 Proteins

1.4 Starch

 1.4.1 Starch composition

1.5 Starch quality determination

 1.5.1 Gelatinisation
 1.5.2 Retrogradation
 1.5.3 Starch functionality

1.6 Properties of sweet potato starch and their influence upon processing

 1.6.1 Comparison of starch and flour of Sweet potato

1.7 Analysis techniques

 1.7.1 Rapid Visco Analyser (RVA)
 1.7.2 Compression test

1.8 Sweet Potato flours used in composite flour for bakery products

1.9 Carbohydrate metabolism and dietary fibre

1.10 Effect of starch on starch digestibility

1.11 Aim and outline of the thesis
Chapter 2 Materials and Methods 38
 2.1 Materials 38
 2.2 Starch extraction 38
 2.3 Sweet potato flour extraction 39
 2.4 Residue fibre extraction 39
 2.5 Grinding and packaging of samples 39
 2.6 Moisture content 40
 2.7 Protein content 40
 2.8 Pasting behaviour 41
 2.9 Preparation of biscuits 41
 2.10 Evaluation of biscuits 43
 2.11 Total dietary fibre of biscuit 43
 2.12 Protein and moisture analysis of biscuit 44
 2.13 In vitro starch digestibility of biscuit 44
 2.14 Starch content of biscuit 46
 2.15 Bread preparation 47
 2.16 Hardness of bread 48
 2.17 Loaf volume (LVOL) 48
 2.18 Loaf weight of bread 49
 2.19 Height of bread 49
 2.20 Protein and moisture analysis of bread 49
 2.21 In vitro starch digestibility of bread 50
 2.22 Statistical analysis 50
Chapter 3 Pasting characteristic of sweet potato flour and isolate components (starch and residue) 53
3.1 Introduction 54
3.2 Materials and methods 56
3.3 Results and discussion 58
 3.3.1 Composition of sweet potato starch 58
 3.3.2 Pasting behaviour 59
3.4 Conclusion 68
3.5 References 70

Chapter 4 Sweet-potato flour and isolate components (starch, flour and residue fibre) and their utilization in biscuit making 74
4.1 Introduction 75
4.2 Materials and methods 77
 4.2.1 Preparation of sweet potato starch 77
 4.2.2 Preparation of sweet potato flour 77
 4.2.3 Preparation of crude fibre flour 78
 4.2.4 Proximate analysis, total starch, dietary fibre and amylase content 78
 4.2.5 Pasting properties 78
 4.2.6 Preparation of biscuits 79
 4.2.7 Evaluation of biscuits 79
 4.2.8 In vitro starch digestibility of biscuits 80
4.3 Statistical analysis 80
4.4 Results and discussion 81
4.4.1 Starch analysis 81
4.4.2 Pasting properties 82
4.4.3 Biscuit quality 83
4.4.4 Chemical properties of biscuits 85
4.4.5 In vitro digestibility studies 86

4.5 Conclusions 87
4.6 References 96

Chapter 5 Utilization of sweet-potato flour and isolate components in dough and bread systems. 100

5.1 Proximate analysis 100
5.2 Physical characteristics 101
5.2.1 Loaf volume (LVOL) 101
5.2.2 Loaf weight 103
5.2.3 Specific loaf volume 104
5.2.4 Loaf hardness (Texture) 105

5.3 Bread in vitro digestibility 106

Chapter 6 Overall discussions 141

6.1 Proximate analysis of bread samples 141
6.2 Physical properties of breads 143
6.3 Starch digestibility 148

Chapter 7 Conclusions and recommendations 153

7.1 Conclusions 153
7.2 Recommendation for future work 154
List of Figures

<table>
<thead>
<tr>
<th>Number</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1:</td>
<td>X-ray diffraction of 3 types of crystallinity in starch</td>
</tr>
<tr>
<td>Figure 1.2:</td>
<td>Structure of Amylose and amylopectin</td>
</tr>
<tr>
<td>Figure 1.3:</td>
<td>Fundamental transformation stages in processing of starch</td>
</tr>
<tr>
<td>Figure 2.1:</td>
<td>Modification of biscuit formulation</td>
</tr>
<tr>
<td>Figure 2.2:</td>
<td>Modification of AACC optimised straight dough bread making</td>
</tr>
<tr>
<td>Figure 3.1:</td>
<td>RVA viscosity profiles of 3 sweet potato-starches compared with different sweet-potato ingredients</td>
</tr>
<tr>
<td>Figure 3.2:</td>
<td>RVA viscosity profiles of wheat flour compared with different sweet-potato ingredients</td>
</tr>
<tr>
<td>Figure 4.1:</td>
<td>Sweet-potato starch biscuits and wheat biscuit digestibility</td>
</tr>
<tr>
<td>Figure 4.2:</td>
<td>Sweet-potato flour biscuit and wheat biscuit digestibility</td>
</tr>
<tr>
<td>Figure 4.3:</td>
<td>Sweet-potato fibre biscuits and wheat biscuit digestibility</td>
</tr>
<tr>
<td>Figure 5.1:</td>
<td>Sweet-potato starch effect on moisture content of bread</td>
</tr>
<tr>
<td>Figure 5.2:</td>
<td>Sweet-potato flour effect on moisture content of bread</td>
</tr>
<tr>
<td>Figure 5.3:</td>
<td>Sweet-potato fibre effects on moisture content of bread</td>
</tr>
<tr>
<td>Figure 5.4:</td>
<td>Sweet-potato starch effect on protein of bread</td>
</tr>
<tr>
<td>Figure 5.5:</td>
<td>Sweet-potato flour effect on protein of bread</td>
</tr>
<tr>
<td>Figure 5.6:</td>
<td>Sweet-potato fibre effect on protein of bread</td>
</tr>
<tr>
<td>Figure 5.7:</td>
<td>Sweet-potato starch effect on volume of bread</td>
</tr>
<tr>
<td>Figure 5.8:</td>
<td>Sweet-potato flour effect on volume of bread</td>
</tr>
</tbody>
</table>
Figure 5.9: Sweet-potato fibre effect on volume of bread………………..117
Figure 5.10: Sweet-potato starch effect on height of bread……………118
Figure 5.11: Sweet-potato flour effect on height of bread………………119
Figure 5.12: Sweet-potato fibre effect on height of bread……………..120
Figure 5.13: Sweet-potato starch effect on weight of bread……………121
Figure 5.14: Sweet-potato flour effect on weight of bread…………….122
Figure 5.15: Sweet-potato fibre effect on weight of bread……………123
Figure 5.16: Sweet-potato starch effect on hardness of bread…………124
Figure 5.17: Sweet-potato flour effect on hardness of bread…………..125
Figure 5.18: Sweet-potato fibre effect on hardness of bread…………126
Figure 5.1A: Sweet-potato starch replacement bread and
 control bread digestibility………………………………………139
Figure 5.2A: Sweet-potato starch addition bread and
 control bread digestibility………………………………………139
Figure 5.3A: Sweet-potato flour replacement bread and
 control bread digestibility………………………………………139
Figure 5.4A: Sweet-potato flour addition bread and
 Control bread digestibility………………………………………139
Figure 5.5A: Sweet-potato fibre replacement bread and
 control bread digestibility………………………………………139
Figure 5.6A: Sweet-potato fibre addition bread and
 control bread digestibility………………………………………139
Figure 5.1B: Sweet-potato starch replacement and addition bread and
 control bread digestibility………………………………………140
Figure 5.2B: Sweet-potato flour replacement and addition bread and control bread digestibility………………………………………………140

Figure 5.3B: Sweet-potato fibre replacement and addition bread and control bread digestibility………………………………………………140

Figure C.1: Composition of starch raw materials………………………………………164

Figure C.2: Composition of starch raw materials dry substance………………165
List of Tables

<table>
<thead>
<tr>
<th>Number</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.1: Percentage mean and variation of major constitutions of sweet-potato</td>
<td>7</td>
</tr>
<tr>
<td>Table 1.2: Gelatinisation characteristics of sweet-potato and other starches</td>
<td>17</td>
</tr>
<tr>
<td>Table 2.1: Formula used for biscuit with sweet potato starch, flour and fibre</td>
<td>51</td>
</tr>
<tr>
<td>Table 2.2: Formula used for baking wheat flour breads with starch, flour and fibre</td>
<td>52</td>
</tr>
<tr>
<td>Table 3.1: Chemical Compositions of three varieties of sweet-potato</td>
<td>58</td>
</tr>
<tr>
<td>Table 3.3: RVA pasting characteristics for different sweet-potato starches (pure) at varying levels of wheat flour</td>
<td>63</td>
</tr>
<tr>
<td>Table 3.4: RVA pasting characteristics for different sweet-potato starch at varying levels of wheat flour</td>
<td>63</td>
</tr>
<tr>
<td>Table 3.5: RVA pasting characteristics for different sweet-potato flour at varying levels of wheat flour</td>
<td>64</td>
</tr>
<tr>
<td>Table 3.6: RVA pasting characteristics for different sweet-potato fibre at varying levels of wheat flour</td>
<td>65</td>
</tr>
<tr>
<td>Table 4.1: Formulation of Biscuit</td>
<td>88</td>
</tr>
<tr>
<td>Table 4.2: Chemical compositions of the extracted fractions from the three varieties of sweet-potato tubers</td>
<td>89</td>
</tr>
<tr>
<td>Table 4.3: RVA results for different sweet-potato starch at varying levels of wheat flour</td>
<td>90</td>
</tr>
<tr>
<td>Table 4.4: Fracture and Biscuit Measurement</td>
<td>91</td>
</tr>
<tr>
<td>Table 4.5: Proximate Analysis of biscuits</td>
<td>92</td>
</tr>
<tr>
<td>Table 5.1:</td>
<td>Sweet-potato starch effect on the physical properties of bread</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>Table 5.2:</td>
<td>Sweet-potato flour effect on the physical properties of bread</td>
</tr>
<tr>
<td>Table 5.3:</td>
<td>Sweet-potato fibre effect on the physical properties of bread</td>
</tr>
<tr>
<td>Table 5.5:</td>
<td>Correlations of various sweet potato bread physical properties</td>
</tr>
<tr>
<td>Table A.1:</td>
<td>Some important physicochemical properties of amylose and amylopectin</td>
</tr>
<tr>
<td>Table A.2:</td>
<td>Food ranking observed in the glycemic index</td>
</tr>
<tr>
<td>Table B.1:</td>
<td>Chemical characteristics from starches obtained from various sources</td>
</tr>
<tr>
<td>Table C.1:</td>
<td>USA Sweet potato Bread composition</td>
</tr>
</tbody>
</table>
Acknowledgements

There are people whom I would like to thank who helped me in various stages of completing this thesis.

• Charles Brennan—my supervisor. Thank you for providing knowledge into the world of starch for which I have had no previous knowledge to any great detail. Thank you also for showing me how to use the various pieces of equipment required.

• New Zealand Development Agency (NZAID)—my sponsor. Thank you for giving me extra time for completing my thesis. Thank you for providing much needed support and commitment.