Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
SOME APPLICATIONS OF STATISTICAL PHYLOGENETICS

A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Biomathematics at Massey University

Klaus Peter Schliep

2009

Copyright © 2009 by Klaus Peter Schliep
Abstract

The increasing availability of molecular data means that phylogenetic studies nowadays often use datasets which combine a large number of loci for many different species. This leads to a trade-off. On the one hand more complex models are preferred to account for heterogeneity in evolutionary processes. On the other hand simple models that can answer biological questions of interest that are easy to interpret and can be computed in reasonable time are favoured. This thesis focuses on four cases of phylogenetic analysis which arise from this conflict.

- It is shown that edge weight estimates can be non-identifiable if the data are simulated under a mixture model. Even if the underlying process is known the estimation and interpretation may be difficult due to the high variance of the parameters of interest.

- Partition models are commonly used to account for heterogeneity in data sets. Novel methods are presented here which allow grouping of genes under similar evolutionary constraints. A data set, containing 14 genes of the chloroplast from 19 anciently diverged species is used to find groups of co-evolving genes. The prospects and limitations of such methods are discussed.

- Penalised likelihood estimation is a useful tool for improving the performance of models and allowing for variable selection. A novel approach is presented that uses pairwise dissimilarities to visualise the data as a network. It is further shown how penalised likelihood can be used to decrease the variance of parameter estimates for mixture and partition models, allowing a more reliable analysis. Estimates for the variance and the expected number of parameters of penalised likelihood estimates are derived.

- Tree shape statistics are used to describe speciation events in macroevolution. A new tree shape statistic is introduced and the biases of different cluster methods on tree shape statistics are discussed.
Acknowledgements

I would like to thank my supervisors Michael Hendy, Barbara Holland, David Penny and Peter Waddell for their support and advice during the time of my studies. I have been blessed to have supervisors with an enormous enthusiasm for science in general and phylogenetics in particular.

I also have to thank the Marsden Fund and the Allan Wilson Centre for financial support, which made it possible for me to study in New Zealand.

I would like to acknowledge Trish McLenachan and Gillian Gibb for their heroic effort, together with my supervisors, to proof-read this thesis and fight back my German grammar and spelling.

Many people contributed with ideas, data to the different chapters of this thesis. I have to thank Peter Lockhart and Ellen Nisbet and all other biologists who came up with challenging biological problems or supplying data. I thank Elisabeth Allman and Mark Pagel for helpful discussions about multiple optima and mixture models and Berwin Turlach for some advice on the LASSO. Some of the ideas were born or enhanced during numerous discussions with Bhalchandra, Matt, Tim, Warwick, Scott and many others, involving even more coffee.

I want to thank all the assistance from AWC staff (Joy, Susan, Karen) and IMBS (Ann, Cynthia) for doing a fabulous job. Special thanks to Tim, Warwick, Jing and Nat for taking care of my computers and software.

Thanks to all the members and visitors of the Allan Wilson centre, especially the ‘boffin lounge’, for creating such a friendly, multidisciplinary working environment during all my studies.

I must thank all the people who made my stay in Palmerston North such an enjoyable time. First I want to thank all the Latin Americans by passport, spouse or soul in Palmy. First of all my flatmate Rogerio, who put up with me for such a long time. Katia, Paul, Carlos, Matt and many others for all the good times at salsa classes or parties, churrascos or just at a coffee and cheesecake. Furthermore all members of the ‘monkeys uncle’ volleyball team and everybody I have been walking across Tongariro
with (I can’t mention them all here).

I want to thank to my friends in Munich who have kept in contact with me through all this time, especially those calling during night times. The main thanks goes to my family, including a new addition, who will be mostly unaware how important their role was during all the challenges in my studies.
Contents

Abstract iii

Acknowledgements v

Contents vii

List of Figures xii

List of Tables xiii

Abbreviations xv

1 Introduction 1

1.1 Structure of the thesis 1

1.2 Background 5

1.2.1 Graphs, trees and networks 5

1.2.2 Data 8

1.2.3 Methods of tree estimation 8

1.2.4 Tree rearrangements 9

1.2.5 Markov models of character evolution 11

1.3 Maximum likelihood estimation in phylogenetics 12

1.3.1 Optimising the likelihood 13

1.3.2 Hypothesis testing 15

1.4 Hadamard conjugation 17
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4.1</td>
<td>Maximum Likelihood Estimation using the Hadamard conjugation</td>
<td>18</td>
</tr>
<tr>
<td>1.4.2</td>
<td>Distance Hadamard</td>
<td>19</td>
</tr>
<tr>
<td>1.5</td>
<td>Data sets</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>Mixture models</td>
<td>22</td>
</tr>
<tr>
<td>2.1</td>
<td>Background</td>
<td>23</td>
</tr>
<tr>
<td>2.1.1</td>
<td>General theory of mixture models</td>
<td>23</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Identifiability of mixture models</td>
<td>25</td>
</tr>
<tr>
<td>2.1.3</td>
<td>Mixtures to model rate heterogeneity</td>
<td>26</td>
</tr>
<tr>
<td>2.1.4</td>
<td>Mixtures of sets of edge lengths and topologies</td>
<td>28</td>
</tr>
<tr>
<td>2.1.5</td>
<td>Detecting partitions</td>
<td>28</td>
</tr>
<tr>
<td>2.2</td>
<td>Methods</td>
<td>29</td>
</tr>
<tr>
<td>2.3</td>
<td>Results</td>
<td>31</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Mixture of two trees</td>
<td>31</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Model misspecification of mixture models</td>
<td>39</td>
</tr>
<tr>
<td>2.4</td>
<td>Conclusion</td>
<td>40</td>
</tr>
<tr>
<td>3</td>
<td>Multiple Optima</td>
<td>41</td>
</tr>
<tr>
<td>3.1</td>
<td>Background</td>
<td>42</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Multiple optima in general functions</td>
<td>42</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Multiple optima on four taxon trees</td>
<td>44</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Parameter correlations and multiple optima</td>
<td>47</td>
</tr>
<tr>
<td>3.2</td>
<td>Methods</td>
<td>52</td>
</tr>
<tr>
<td>3.3</td>
<td>Results</td>
<td>53</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Constructing counter-examples from mixture models</td>
<td>53</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Finding multiple optima with maximum likelihood and Bayesian methods</td>
<td>56</td>
</tr>
<tr>
<td>3.4</td>
<td>Conclusions</td>
<td>58</td>
</tr>
<tr>
<td>4</td>
<td>Partition Models models for multi-gene datasets</td>
<td>61</td>
</tr>
<tr>
<td>4.1</td>
<td>Methods</td>
<td>62</td>
</tr>
</tbody>
</table>
List of Figures

1.1 Trees and networks ... 6
1.2 Circular splits and splits graph 7
1.3 NNI and SPR tree rearrangements 10
1.4 The two most frequent gene tree topologies for the Yeast data set 21

2.1 Density and distribution function of the gamma function 27
2.2 Likelihood for different mixtures 32
2.3 Mixtures of trees .. 32
2.4 Bootstrap .. 34
2.5 Correlation matrix of the edge lengths 36
2.6 Correlation matrix of the edge lengths for Bayesian analysis 37
2.7 Posterior probability of the mixtures 38
2.8 Likelihood for different mixtures 39

3.1 A function with infinite number of multiple optima 43
3.2 Schematic of the different possibilities for maximum likelihood optima ... 45
3.3 A four taxon tree on the topology T_{1234} 49
3.4 Estimated trees for different mixtures 51
3.5 Mixture of two trees and resulting multiple optima 54
3.6 Splits graph for mixture data ... 55
3.7 Multiple optima for simulated data 56
3.8 A posteriori distribution of edge weight on a multiple optima tree 57
3.9 A posteriori distribution of edge weight on a multiple optima tree 59
4.1 Stochastic partitioning of genes ... 64
4.2 Likelihood, AIC and BIC for different partitions models 71
4.3 Principal components for edge spectra 72
4.4 Directed acyclic graph of the gene ontology 76
4.5 Trees of estimated classes .. 79
4.6 Principal components for edge spectra 81

5.1 Schematic representation of bias-variance trade-off 84
5.2 Example trees with 5 taxa .. 87
5.3 Plot Edge weights in dependence of the LASSO penalty 96
5.4 Networks for different LASSO penalties 98
5.5 The paths of the edge weights for the distance Hadamard 99
5.6 Comparison of splits graphs .. 100
5.7 Comparison of splits graphs .. 101

6.1 Three 3-taxon trees as an example to set up the penalty matrix 104
6.2 Trees for PML ... 110
6.3 Dependence between degrees of freedom and the penalty term 111
6.4 AIC, BIC and CV for partition models 112
6.5 Penalized Likelihood .. 113

7.1 Empirical cumulative distribution function for the path length 124
7.2 Correlations of tree measures ... 126
7.3 Robinson-Foulds distances .. 128
7.4 Robinson-Foulds distances .. 129
7.5 Parsimony score ... 130
7.6 Parsimony score ... 131
7.7 Differences in the number of cherries 132
7.8 Sackin index ... 133
List of Tables

1.1 10 sites of an alignment of 8 species of yeast 8

3.1 Site patterns and sequence spectra 48
3.2 Site pattern and sequence spectra 50
3.3 Correlation matrix of edge weights 50

4.1 Summary of runs for the stochastic partitioning algorithm 70
4.2 Shimodaira-Hasegawa test ... 74
4.3 Biological function associated to the clusters 77
4.4 Summary of 14 different amino acid sequences of the chloroplast 78

5.1 Design matrix for an unrooted tree and network 86
5.2 Design matrix and contrast matrix for a rooted tree 86
5.3 Least-squares representation for different distance methods 88
5.4 Mallows’ C_p for different sized network 97

7.1 Parsimony score and numbers of cherries for the Nickrent et al. (2002) data set ... 127
7.2 Parsimony score and numbers of cherries for the trees generated by the different methods for the human mitochondrial DNA data........ 134
Abbreviations

AIC Akaike information criterion
BIC Bayesian information criterion
C_p Mallows C_p
JC Jukes-Cantor (model of nucleotide substitution)
EM-algorithm Estimation-maximisation algorithm
GLS General Least-Squares
GO Gene ontology
GTR general time-reversible (model of nucleotide substitution)
LARS Least Angle Regression
LASSO Least Absolute Shrinkage and Selection Operator
LS Least-Squares
MCMC Markov Chain Monte Carlo
MDS Multidimensional scaling
ML Maximum Likelihood
MLE Maximum Likelihood Estimator
MP Maximum Parsimony
NJ neighbour joining
NNI Nearest-Neighbor Interchange
NR Newton-Raphson
PDA Proportional to Distinguishable Arrangements
PML Penalised Maximum Likelihood
PNJ Parsimony Neighbour Joining
SPR Subtree Pruning and Regrafting
UPGMA Unweighed Pair-Group Mean Average
WPGMA Weighted Pair-Group Mean Average
WLS Weighted Least-Squares