40Ar/39Ar geochronology of Neogene phreatomagmatic volcanism in the western Pannonian Basin, Hungary

Jan Wijbrans a,⁎, Károly Németh b,1, Ulrike Martin c, Kadosa Balogh d

a Vrije Universiteit, Department of Isotope Geochemistry, de Boelelaan 1085, 1081HV Amsterdam, The Netherlands
b Eötvös University, Department of Regional Geology and Geological Institute of Hungary, Stefánia út 14, Budapest H-1143, Hungary Budapest H-1088, Hungary
c Universitäet Würzburg, Institut für Geologie, Pleicherswall-1, Würzburg, D-97070, Germany
d Institute of Nuclear Research of the Hungarian Academy of Sciences, Debrecen, H-4026, Bem tér 18/C, Hungary

Received 25 June 2006; received in revised form 8 March 2007; accepted 10 May 2007

Abstract

Neogene alkaline basaltic volcanic fields in the western Pannonian Basin, Hungary, including the Bakony–Balaton Highland and the Little Hungarian Plain volcanic fields are the erosional remnants of clusters of small-volume, possibly monogenetic volcanoes. Moderately to strongly eroded maars, tuff rings, scoria cones, and associated lava flows span an age range of ca. 6 Myr as previously determined by the K/Ar method. High resolution 40Ar/39Ar plateau ages on 18 samples have been obtained to determine the age range for the western Pannonian Basin Neogene intracratonic volcanic province. The new 40Ar/39Ar age determinations confirm the previously obtained K/Ar ages in the sense that no systematic biases were found between the two data sets. However, our study also serves to illustrate the inherent advantages of the 40Ar/39Ar technique: greater analytical precision, and internal tests for reliability of the obtained results provide more stringent constraints on reconstructions of the magmatic evolution of the volcanic field. Periods of increased activity with multiple eruptions occurred at ca. 7.95 Ma, 4.10 Ma, 3.80 Ma and 3.00 Ma.

These new results more precisely date remnants of lava lakes or flows that define geomorphological marker horizons, for which the age is significant for interpreting the erosion history of the landscape. The results also demonstrate that during short periods of more intense activity not only were new centers formed but pre-existing centers were rejuvenated.

© 2007 Published by Elsevier B.V.

Keywords: phreatomagmatic; pyroclastic; basanite; monogenetic; scoria; 40Ar/39Ar geochronology; peperite; erosion

1. Introduction

Intracontinental volcanic fields commonly are characterized by low magma supply rates and prolonged activity over periods of millions of years (Walker, 1993; Takada, 1994; Connor et al., 2000). They typically consist of scattered volcanic vents that are often considered to be monogenetic as they appear to have never constructed significant composite edifices (Walker, 1993). However, on closer inspection many of the vents do show signs of
multiple eruption histories (Németh et al., 2003), and their architecture can be complex despite their small size; establishing a time line for individual centers is thus important for understanding their evolution. In addition to the smaller centers, large shield volcanoes and lava flow fields may also occur in these fields (Hasenaka, 1994). Fundamental physical characteristics of volcanic fields include 1) the number, type, eruption styles, sedimentation and erosion history of individual volcanoes (White, 1990; Németh and Martin, 1999a); 2) the timing and frequency of eruptions (Connor et al., 2000); 3) the distribution of volcanoes (Connor et al., 1992); and 4) the relationship of the volcanoes to tectonic features such as basins, faults, and rift zones (Conway et al., 1997). Characterizing such features provides information on magma generation and ascent and will provide a quantitative basis for comparisons among different volcanic fields.

The Neogene western Pannonian volcanic fields were shown during the past decade to have been predominantly phreatomagmatic in eruption style (Németh et al., 2001; Martin and Németh, 2004). Interaction of abundant meteoric water and uprising magma generated explosions that produced the maars and tuff rings. However, there is also evidence for non-explosive, peperite-forming interactions between wet host sediment and intruding, predominantly basanite melt (Martin and Németh, 2007). The resulting craters have been filled by lava in cases where the magma supply was large enough. The timing of the volcanic events in western Hungary has been a concern for a long time (Lóczy, 1913), which has been generally addressed in the last 2 decades by several studies applying the K/Ar technique (Balogh et al., 1982, 1986; Pécskay et al., 1995; Balogh and Pécskay, 2001). This work revealed that the duration of volcanism was ca. 6 Myrs, from about 8 Ma up to 2 Ma. The initiation of volcanism appears to be well constrained at ca 8.0 Ma by several attempts to gain precise K/Ar ages from a maar volcanic complex at Tihany (Balogh and Németh, 2005), but possible episodicity, synchronicity, and the timing of culmination and termination of activity is still under debate. Here, in this paper, we shed new light on these questions by presenting for the first time a set of high precision 40Ar/39Ar isotope age data from Neogene volcanic rocks of this region.

The primary aim of this study was twofold, 1) to measure the age of samples from selected key locations where the present level of volcanological knowledge is sufficient enough to allow a significant step forward in our understanding of the timing and recurrence rate of the volcanism, and 2) to evaluate the existing K/Ar data set in comparison with the new 40Ar/39Ar ages.
Central Range (Martin and Németh, 2005). The oldest units consist of a thick package of Silurian schists, Permian terrestrial red sandstones and Alpine-type Mesozoic carbonate platform sediments. During the Neogene, immediately prior to initiation of volcanism, a large lake occupied the Pannonian Basin, the Pannonian Lake (Kázmér, 1990; Magyar et al., 1999) in which a thick sequence of siliciclastic sediments was deposited (Jambor, 1989; Müller, 1998; Juhasz et al., 1999). At the time volcanism began, the area was an alluvial plain (Magyar et al., 1999) on which shallow lakes existed and shallow subaqueous-to-emergent volcanism is inferred on the basis of the textures of pyroclastic rock units as well the common occurrence of peperites (Martin and Németh, 2005, 2007).

On the basis of unconformity-bounded continental sedimentary units in the Neogene stratigraphy of the western Pannonian Basin, three major maximum flooding surfaces have been identified and dated by magnetostratigraphic correlation at 9.0 Ma, 7.3 Ma and around 5.8 Ma (Lantos et al., 1992; Sacchi et al., 1999). The first maximum flooding event correlates with Congeria czjzeki fossils in lacustrine beds (Lorenthey, 1900; Müller and Magyar, 1992; Magyar et al., 1999), which mark the Lower Pannonian stage of Lorenthey (1900). After the flooding event, a significant base level drop and subaerial erosion took place around 8.7 Ma (Müller and Magyar, 1992; Sacchi et al., 1999). The second maximum flooding event took place around 7.3 Ma and it is considered to be represented by strata containing Congeria rhomboidea.
beds (Müller and Magyar, 1992; Sacchi et al., 1997, 1999). A general lowstand and subaerial conditions in the marginal areas is estimated to have occurred around 6 Ma (Sacchi et al., 1999), followed by the last known flooding around 5.3 Ma. On the basis of present knowledge, the ages of volcanic eruptions mostly postdate the latest highstand of the shrinking Pannonian Lake (i.e. younger than 5.3 Ma; Balogh et al., 1982, 1986) with the volcanoes erupted onto an erosion surface (Lóczy, 1913). Precise ages of volcanic rocks, and their correlation with the established eruptive history (subaerial versus shallow subaqueous/emergent) can provide important constraints for reconstruction of the sedimentary and landscape evolution of western Hungary since 9 Ma.

The western Hungarian volcanic fields form the eastern extent of a zone of Neogene intracontinental volcanism in central Europe that formed multiple volcanic fields, including the Massif Central in central France in the west, the Eifel volcanic field in the north and the Slovakian and Hungarian volcanic fields in the east. In western Hungary the formation of the Bakony – Balaton Highland volcanic field and the Little Hungarian Plain volcanic field resulted from 1) deep processes: melt supply from the lithospheric mantle, 2) crustal processes: the Pannonian basin itself was formed by early to mid-Miocene extension, and the volcanic field is situated in the northern block of the Balaton fault zone that is one of the major fault zones controlling the development of the Pannonian basin, and 3) surface processes: the water saturated near surface sediments in the late Miocene and Pliocene were the cause of the explosive character of most of the volcanic events.

3. Analytical techniques

The basalt samples were prepared using standard laboratory techniques (Koppers et al., 2001): following crushing and sieving 250–500 μm fragments were leached in dilute HNO₃ and HF in order to remove alteration phases. Any phenocryst phases present (plagioclase, clinopyroxene and olivine) were routinely removed before packaging ca 250 mg of groundmass in Al-foil packages. Sample packages and ca 5 mg aliquots of laboratory standard sanidine DRA-2 (25.26 Ma, intercalibrated against TCR-1 sanidine at 28.34 Ma; Renne et al., 1998) were sealed in 9 mm diameter quartz glass tubes, with one standard package positioned between every two packages of unknowns.

The irradiation of the tube was carried out for a period of 2 h in a standard 80 mm tall, 25 mm diameter high purity Al sealed tube inserted in a Cd-lined tube in the rotating RODEO poolside facility of the EU-JRC HFR reactor, Petten, The Netherlands, with the sample capsule positioned in the centre of the neutron field. The neutron flux profile across the reactor is optimized such as to give a negligible flux gradient across the central 12 cm of the Cd-tube. Rotation of the tube during irradiation (60 min⁻¹) helps to minimize the horizontal flux gradient in the tube. The correction factors for the Cd-lined RODEO tube were determined in numerous experiments in our laboratory using high purity Fe doped Ca-silicate and K-silicate glass at (40Ar/39Ar)K: 229 ± 0.00183 ± 0.00010, (39Ar/37Ar)Ca: 0.000699 ± 0.000001, 230 ± 0.000270 ± 0.0000001.

Upon return to the laboratory, the standard minerals were loaded ca. 4–6 grains per position, (5 replicates for each position) in a Cu sample tray (diameter 66 mm, sample holes 2 mm diameter, 3 mm deep, 185 positions) in a low volume UHV gas sample purification line (Wijbrans et al., 1995) and fused by a laser single fusion technique under full software control. The laser beam, 238 CW argon ion laser with principle lines at 488 nm and 514.5 nm and variable laser power up to 24 W in all lines, was focused to a ca. 200 μm spot size, and under software control, the x–y stage is moved in 4 circles increasing in diameter from ca 500 μm to 2000 μm to ensure that all individual crystals are fused using a ca. 15 W laser beam in the experiment. From each sample ca. 50 mg was loaded in a Cu sample tray (diameter 66 mm, 22 sample holes of 6 mm diameter, 3 mm deep, and 60° angle to the wall to prevent laser shadows at the bottom of the pan). The rock fragments were spread out evenly in each position in the tray to ensure uniform laser heating. The laser beam was defocused to a ca. 2000 μm spot. The software controlled x–y stage moves the sam- ple holder in a raster pattern (three runs right to left direction followed by three runs perpendicular to the first) under the laser beam to ensure event heating of the whole sample. Laser heating under these parameters lasted for 218 s, followed by 436 s clean time, which was sufficient to admit clean argon gas into the mass spectrometer. The 5 isotopes of argon (m/e: 40–36) and their low mass side baselines (at half mass distance) were measured sequentially by magnet field controlled peak hopping on an MAP 215-50 double focusing noble gas mass spectrometer fitted with a Johnston MM1 SEM detector operated at a relative gain of 500 with respect to the Faraday collector (10¹¹ Ohm resistor on the Faraday collector amplifier). The SEM amplifier is fitted with three switchable resistors (10³, 10⁴, and 10⁵ Ω), that will switch to an appropriate range after the 40Ar beam in. Density is measured during the peak centering routine at the beginning of each measurement. The integration time for each beam is variable at 1 s increments. Typical
Age ±1σ Plateau age ±1σ MSWD%39Ar, n steps Inverse Isochron age ±1σ MSWD K/Ca ±1σ

HAL1 VU45-A12 3297.9 ±180.4 4.08 ±0.05 1.78 ±0.05 3.87 ±0.17 1.50 ±0.17 0.50 ±0.60

HAL2 VU45-A14 3903.8 ±39.7 3.82 ±0.03 1.09 ±0.03 8.76 ±0.17 3.85 ±0.76 1.11 ±0.65

Haj VU45-A15 3803.5 ±40.6 3.80 ±0.02 1.91 ±0.02 71.71 ±0.02 3.74 ±0.76 1.11 ±0.65

SgzD VU45-A17 3959.8 ±47.2 4.53 ±0.05 1.64 ±0.05 79.68 ±0.09 4.33 ±0.76 1.01 ±0.65

SztGY VU45-A18 4355.3 ±24.6 4.22 ±0.04 1.68 ±0.04 86.57 ±0.13 4.14 ±0.76 1.02 ±0.65

HT-6 VU45-B2 7934.2 ±47.4 7.94 ±0.03 1.86 ±0.03 46.22 ±0.07 7.78 ±0.76 1.02 ±0.65

HD10 VU45-B3 3671.4 ±83.2 4.12 ±0.01 2.22 ±0.01 95.87 ±0.10 3.90 ±0.76 1.02 ±0.65

FH-4 VU45-B9 3857.9 ±21.9 3.81 ±0.02 1.57 ±0.02 86.65 ±0.03 4.72 ±0.03 1.02 ±0.65

TW13 VU45-B11 4792.4 ±25.3 4.74 ±0.02 1.91 ±0.02 90.51 ±0.04 4.72 ±0.04 1.02 ±0.65

SG2 VU45-B12 5543.8 ±34.1 5.48 ±0.01 1.49 ±0.01 54.04 ±0.11 5.32 ±0.11 0.37 ±0.11

KS-1 VU45-B14 4569.5 ±32.0 4.63 ±0.02 2.05 ±0.02 71.87 ±0.12 4.61 ±0.12 0.37 ±0.12

HA-1 VU45-B15 3162.2 ±23.9 3.06 ±0.02 1.17 ±0.02 100.00 ±0.03 3.01 ±0.03 1.39 ±0.03

FT7 VU45-B17 2759.8 ±38.7 2.61 ±0.01 0.51 ±0.01 91.65 ±0.08 2.52 ±0.08 1.39 ±0.08

VAR VU45-B18 4171.5 ±41.7 4.08 ±0.02 0.99 ±0.02 81.64 ±0.12 3.85 ±0.12 1.39 ±0.12

AG-1 VU51-B2 2998.1 ±27.8 3.00 ±0.03 1.60 ±0.03 99.02 ±0.12 3.14 ±0.12 0.47 ±0.12

AG-2 VU51-B3 3692.0 ±38.8 3.30 ±0.03 0.51 ±0.03 37.59 ±0.12 3.30 ±0.12 0.04 ±0.12

SP1861 VU51-B4 4153.2 ±47.8 4.15 ±0.05 0.85 ±0.05 98.88 ±0.18 3.81 ±0.18 0.37 ±0.18

TIH VU51-B6 7978.0 ±28.1 7.96 ±0.03 0.51 ±0.03 75.89 ±0.07 8.01 ±0.07 0.46 ±0.07

settings are 10 s for 40Ar and 39Ar beams, 6 s for their 36Ar beams, and 10 for its 38Ar beams, in order to avoid excessive increase in radioactive decay induced noise in the SEM. For data reduction we used the in-house developed ArArCalc2.2c software package (Koppers, 2002) (http://earthref.org/tools/ararcalc/). Mass discrimination was measured several times during the course of this project using our 38Ar-air gas mixture (full description of our mass discrimination measurement protocol can be found in (Kuiper, 2003). For the decay constant and the abundance of 40K we used the values recommended by the IUGS Subcommission on Geochronology (Steiger and Jäger, 1977). Using the values for flux monitors, decay constant and 40K abundance discussed in this paragraph in the 2–8 Ma age bracket we are aware of a consistent bias of ca 1% towards younger ages between our isotopic measurements and the APTS developed for cyclically bedded Neogene sediments (Hilgen et al., 1999; Gradstein et al., 2004; Kuiper et al., 2004, 2005).
locations in the western Pannonian volcanic province.

Full data tables, age spectra, K/Ca spectra and isochrons

can be found in a digital background data set (Background
data set: Table 1), descriptions of the sample

sites and dating results can be found in an appendix

(Background data set: Appendix). A summary of K/Ar

types published previously by Balogh and co-workers is

included as Table 2 in the background data supplement.

A summary of 40Ar/39Ar results is presented in Table 1

and in Fig. 2.

All experiments showed good consistent results with,
in most cases, plateaus that meet commonly accepted
reliability criteria. MSWD values were used to define
the plateau segments (Koppers et al., 2001). All ex-
periments yielded plateau segments with MSWDs
indicating that the gas was derived from one isotopically
homogeneous reservoir. For HD10 and KS-1 the
calculated MSWDs were slightly higher than 2.0, as
the result of low individual analytical step uncertainties.
None of the samples showed significant amounts of
excess or inherited 40Ar in the non-radiogenic intercepts
of the normal and inverse isochron. Nor did any
samples show evidence for profound overprinting
subsequent to deposition, with the exception of sample
VAR (from the Szíliget Vár-hegy pyroclastic suc-
cession) which nevertheless yielded an acceptable plateau
age. Several spectra showed elevated ages in the initial
steps which may either point to loosely bound excess
40Ar or, alternatively, to recoil loss of 39Ar from fine
gained alteration phases (Koppers, 2002). Several
experiments thus yielded mildly sloping inverse stair-
case spectra, step by step decreasing, still within accept-
able limits forming a plateau, but perhaps indicative of

mild alteration and consequent recoil loss over substan-
tial parts of the gas release.

From the amounts of 39Ar and 37Ar released during
the experiments some information may be obtained on
the chemical composition of the mineral phases con-
tributing to the spectrum. This effect, as shown in the K/
Ca plots (see supplementary data tables), indicates that in
the groundmass separates used for this study K-rich
mineral phases consistently dominate during the first
half of the experiment whereas towards higher experi-
ment temperatures proportionally more gas is derived
from Ca-rich phases. When the variation in K/Ca is
larger than one order of magnitude, both end member
phases contribute to the plateau age, which suggests that
the K-rich phase observed in the first halves of the
experiments is a primary magmatic phase and not an
alteration product. The exception to this observation is
sample AG2 (from a scoria cone remnant topping the
Agár-tető shield volcano) where the phase enriched in Ca
actually has a slightly, but in terms of finding a plateau,
significantly increased age with respect to the plateau
segment. The radiogenic component of the argon ranges
from less than 10% to ca 80%. The low amounts of
radiogenic argon typically found in the samples with low
K/ Ca is reflected in their proportionally larger analytical
uncertainties (e.g. sample VAR).

5. Discussion

The new 40Ar/39Ar ages show that volcanism oc-
curred in two broad periods: the first period is confined to
two eruption centres formed along the north shore of
Lake Balaton, Tihany and Hegyes-tú (Fig. 2, Episode I).

Fig. 2. Cumulative probability diagram showing all 40Ar/39Ar age information obtained for this study. All individual step ages and their 1σ
uncertainties have been used to construct the cumulative probability curve in the diagram. Plateau ages and their 1σ uncertainty intervals are indicated as bars to the left of the individual ages. Age groups (Episodes I, II, III and IV) are identified with Roman numerals.

Please cite this article as: Wijbrans, J. et al. 40Ar/39Ar geochronology of Neogene phreatomagmatic volcanism in the western Pannonian Basin, Hungary. Journal of Volcanology and Geothermal Research (2007), doi:10.1016/j.jvolgeores.2007.05.009
The age results for these two centres, 7.94±0.03 Ma and 7.96±0.03 Ma are identical suggesting that we are dealing with two surface exposures of rocks from the same eruption. The other 16 samples (Fig. 3) define the second broad period of activity that formed of the volcanic field with eruptions starting ca. 5.5 Myr ago and reaching a culmination around 4.0 Ma (Fig. 2) with activity recorded at Halom-hegy: 4.08, 3.82 Ma, Hajagos: 3.80 Ma (Fig. 3a), Hegyes: 4.12 Ma, Fekete-hegy lava field: 3.81 Ma, the Szligiget diatreme Vár-hegy pyroclastic sequence: 4.08 Ma, and the Sümegprága sill: 4.15 Ma). This second broad period ended ca 2.6 Myr ago.

In addition to the broad division into two periods, the first centred around 8.0 Ma and the second centred around 4.0 Ma, it was noted that eruptions in different

Fig. 3. Measured samples from a) dated blocky peperite from Hajagos (Location 2). Dark angular clasts are the basanite hosted in fine sediment; b) Kissomlyó (Location 9) pyroclastic unit overlain by siliciclastic beds invaded by the dated lava, c) columnar jointed basanite overlain the tuff ring units at Haláp maar (Location 10). White bars represent 1 m on each figure.

Please cite this article as: Wijbrans, J. et al. 40Ar/39Ar geochronology of Neogene phreatomagmatic volcanism in the western Pannonian Basin, Hungary. Journal of Volcanology and Geothermal Research (2007), doi:10.1016/j.jvolgeores.2007.05.009
volcanic centres often yielded age results that were
indistinguishable. This observation forms the basis
for dividing volcanic activity of the field into 5 distinct
episodes (I, II, IIIa, IIIb and IV). These episodes are
defined as periods of activity yielding tightly clustering
ages, often within the individual 2 sigma uncertainties of
the plateau age results. Three ages, that of SG2 (5.48 ±
0.01 Ma), AG-2 (3.30 ± 0.03 Ma, and FT7 (2.61 ±
0.03 Ma) have not been shown as occurring in different
centres.

The oldest ages from our ⁴⁰Ar/³⁹Ar geochronol-
ogy were derived from a basanite plug of Hegyes-tű
(7.94 Ma) and the Tihany volcano (7.96 Ma), together
defining Episode I. These ages are in excellent
agreement with the 7.92 Ma K/Ar age of the Tihany
maar volcanic complex (Balogh and Németh, 2006),
and represent the oldest ages from the western
Hungarian alkaline basaltic volcanic fields. These ages
fall in the time between the maximum highstands of the
Pannonian Lake at 9.0 Ma (msf-2) and 7.3 Ma (msf-3)
(Sacchi et al., 1999). A lowstand characterized by ero-
sion and widely exposed marginal lake banks is inferred
to have developed around 8.7 Ma ago (Sacchi et al.,
1999). The ages of Hegyes-tű and Tihany (this work,
Balogh and Németh, 2005) suggest that these volcanoes
erupted in the phreatic zone of the Pannonian Lake, near
to its shoreline, where water to sustain phreatomag-
matism was likely available from the large water mass of
the nearby lake (Németh et al., 2001). The likely paleo-
geomorphological scenario would be similar to that of
the Newer Volcanics in Victoria, Australia, or the Recent
Ukinrek Maars formed in the 1977’s in Alaskan Pen-
insula, Alaska where volcanic fields have developed in a
near shore environment (Self et al., 1980; Johnson,
1989; Jones et al., 2001).

The main activity during the younger period occurred
around 4.0 Ma (Episode III). On the basis of the plateau
results this group might be subdivided into an older
sub group (episode IIIa) and a younger subgroup (epi-
sode IIIb). The isochron results would suggest that all
described eruptive volumes belong to one single group. The
Szigliget diatreme age is relatively poorly determined,
due to a low level of radiogenic ⁴⁰Ar* and consequent
larger error in the dating results. The significance of the
similarity of these ages is, that the large lava field of the
Fekete-hegy can be viewed as a marker horizon, a ca.
3.81 Myr old paleosurface preserved by the lava. The
Fekete-hegy lava flow has a contact with pyroclastic
rock units at an altitude of ~ 340 m a.s.l., similar to that at
Hajagos (~ 320 m level contact with pyroclastic rocks),
and to the altitude of the uppermost deposits of the pre-
volcanic siliciclastic succession. Taking these values into
account, and inferring a fairly uniform paleosurface over
the area of the field would imply that the topmost ex-
posure of the Hegyesd and Szigliget diatremes (~ 260 m
and ~ 220 m a.s.l., respectively) still would be around
80–100 m below the syn-volcanic paleosurface. This
estimate is in good agreement with volcanological
observations and the interpretation that these two sites
represent exposed diatremes (conduits of former phrea-
tomagmatic volcanoes). The total thickness of pre-
volcanic, mostly Pannonian (Upper Miocene) sand and
silt eroded since these volcanoes erupted 3.8–4.2 Myr
go would be around 200–250 m, implying a 50–65 m
Myr long term averaged erosion rate for these sites. Szent
György-hegy with an age of 4.22 ± 0.4 Ma is the oldest
centre with activity during this period. These estimates
are in the same range as those inferred previously on the
basis of volcanic facies analyses and published K/Ar
ages (Németh and Martin, 1999a).

The volcanic vents belonging to Episode III are as-
sociated with phreatomagmatic pyroclastic units in-
terpreted as evidence that the magma interacted with
abundant water (Németh and Martin, 1999b). The tex-
tural characteristics of the pyroclastic sequences indicate
that phreatomagmatic explosions took place below a subar-
ical paleosurface, i.e. not under lacustrine condi-
tions (Németh and Martin, 1999b). The great variety of
peperite at Hajagos (Fig. 3A) (Martin and Németh, 2007)
suggests, however, that sufficient amounts of water were
present in a near-surface aquifer to fill the maar basins
created by the explosive eruptions. In these water-filled
distal basins, newly erupted basanite melt interacted with the
water saturated wall-rock, crater wall, and pre-volcanic
mud and silt to form various peperites (Fig. 3a) (Martin
and Németh, 2007). The age of Fekete-hegy and as-
sociated sites corresponds well with the proposed time at
which the Pannonian Lake dried up (Sacchi et al., 1997,
1999; Magyar et al., 1999; Sacchi and Horváth, 2002),
and thus is consistent with the observation of subaerial
degradation in combination with a water-saturated, near
surface, aquifer. Conditions at this time were still sub-
stantially wetter then present day conditions in the area.

A group of volcanoes, designated as belonging to
Episode II is slightly older then the Fekete-hegy and as-
sociated sites on the basis of the ⁴⁰Ar/³⁹Ar age.
Grouping around 4.5 to 4.8 Ma (Szigliget lava: 4.53 Ma,
Kissomlyó: 4.63 Ma and Tóti-hegy: 4.74 Ma: Fig. 2)
Episode II). Of this group the Szigliget lava sample
should be viewed with some caution. The field
relationships between the Szigliget pyroclastic sequence
(4.08 Ma) and the coherent lava body (4.53 Ma) are
unclear. An intrusive contact of the lava was proposed
(Borsy et al., 1986) because of its oblique, non-uniform
thickness and because both the underlying and overlying rock is pyroclastic rock with very similar textural features. However, the new age data make this interpretation problematic, and instead indicate a ‘normal’ layer cake stratigraphy, with an older lava flow overlain by a younger phreatomagmatic pyroclastic succession. Alternatively, Szigliget may represent an erosional remnant of a nested diatreme. In this reconstruction, the age data derived from the pyroclastic rocks and the coherent lava body document two different phreatomagmatic events which occurred about 0.5 Myr apart. The coherent lava body and its host pyroclastic unit in this interpretation should belong to an older diatreme, within which a new diatreme developed. Similar nested diatremes are not unknown, especially from kimberlite fields (Skinner and Marsh, 2004), and, therefore, the new age dating suggests that further research on Szigliget with aimed at understanding its volcanic evolution, is required. One should be cautioned however that the Szigliget samples, especially the cauliflower bomb sample from the capping pyroclastic unit, are from basalt that is particularly low in potassium and hence had a very low enrichment in radiogenic 40Ar. Therefore the analytical uncertainty of its ages is large and, thus, the two ages might still belong to the same event.

The 40Ar/39Ar ages of Szent György-hegy: Kissomlyó and Tóti-hegy seem to indicate an eruptive period from 4.2 to 4.8 Ma, which overlaps in time with the period when the Pannonian Lake progressively decreased in size (Sacchi et al., 1999). The age of the lava lake infilling the Kissomlyó tuff ring (Fig. 3b) is 4.63 Ma by the 40Ar/39Ar method. This age is significantly younger than that of the nearby (5.48 Ma) Ság-hegy lava, and, therefore, assuming coeval initiation of volcanism in the Kissomlyó–Ság-hegy area, it can be interpreted as the age of a lava which erupted from the same volcano that produced the Kissomlyó tuff ring. Although all these volcanoes belonging to the 4.2–4.8 Ma period erupted in subaerial conditions, the widespread evidence of phreatomagmaticism is considered strong evidence for the abundance of water in the rocks near the Earth’s surface at this time. The presence of pumice, intra-cratere lacustrine sediments, and glassy volcanic textures may reflect surface water involvement in the development of the Kissomlyó volcano and suggest that shallow (few metres) standing water bodies may have developed from time to time on the large flat plain of western Hungary (Martin and Németh, 2005).

The oldest age (5.48 Ma) for the volcanic field in the younger age group was derived from a peperitic sill from Ság-hegy. This age is correlated with the last lowstand of the Pannonian Lake, however, the pyroclastic succession and intrusive bodies of Ság-hegy clearly demonstrate that they developed in a wet environment. From this observation we argue that after the Pannonian Lake ceased to exist, the first few 100s of metres of the stratigraphy remained water saturated for several millions of years. Thus, after the retreat of the Pannonian Lake, the resultant alluvial plain most likely was littered with small alluvial lakes reflecting a generally high water table and fluctuating in extent with seasonal and climatic variations.

The youngest 40Ar/39Ar ages were found for the Agár-tető shield volcano (AG1: 3.00 Ma), the Haláp tuff ring (3.06 Ma) (Fig. 2, Episode IV) and the Füzes-tó scoria cone (2.61 Ma). The relatively young ages of these localities indicate that their morphology may partly preserve their original volcanic structure. At Haláp, the dated lava flow caps the phreatomagmatic pyroclastic sequence of a tuff ring (Fig. 3c). The lava flow and the pyroclastic sequences have a peperitic contact suggesting that the tephra ring must have been water saturated, therefore, a water-filled crater is inferred. At Haláp the original volcanic landform can be recognized. At Füzes-tó the young age is supported by its well-preserved central depression filled with ballistic bombs and lava spatter indicating that its crater is still intact and unbreached. It is notable that after 2.61 Myr of erosion Füzes-tó still has kept its form, which suggests slow erosion rates and/or that local factors prevented excessive erosion. A young K/Ar age of 2.3 Ma has been measured from Bondoró (Fig. 1), a volcano that is similar to Füzes-tó; however, its crater has been breached (Embey-Isztin, 1993). A similar young age has also been derived from Agár-tető, a capping scoria cone remnant, giving an age of 2.98 Ma by the K/Ar method (Balogh et al., 1982). It seems that the closing stage of the volcanism in western Hungary was around 2.5–2 Ma.

In terms of magmatic processes the Western Hungarian volcanic fields are characterized by several episodes during which (near-) synchronous eruptions occurred at multiple centres. This observation is interpreted as evidence for a discrete number of melt emplacement events during which melt generated in the sublithospheric mantle was emplaced into the crust. The amounts of magma were sufficient to feed several edifices, but not enough to sustain prolonged magmatism at individual edifices. Although we have identified discrete episodes of magmatism, there is no evidence for periodicity in the data. i.e. from our data we cannot deduce that magmatic events occurred with a predictable frequency: the time span between the onset of magmatism at 7.97 Ma and the second event is 2.5 Myr, the period between the second and third episode is ca 700 000 yr, and between the second and third episodes between 4.65 Ma and 4.10 Ma.
was 550 000 yr, and between the final episodes between 3.80 and 3.00 Ma was ca. 800 000 yr.

Several authors have suggested that there is a relation between magmatism and basin extension in the Pannonian Basin (Horváth, 1993). The main phase of basin extension in the Pannonian Basin, however, predates the development of the West Hungarian volcanic fields. The onset of magmatism at ca 7.95 Ma in fact occurred during a period of relative quiescence in the basin evolution, and the main phase of magmatism around 4.0 Ma coincides with the onset of basin inversion (Cloetingh et al., 2005; Fodor et al., 2005). While basin inversion was probably responsible for the disappearance of the Pannonian lake in the early Pliocene, there is no clear evidence that it caused the episodes of mantle melting recorded in the volcanic fields of western Hungary. During the early stages of invasion the environment was still wet enough to cause the phreatomagmatic features in the volcanic field, but it is probably significant that one of the shield volcanoes in the area, Agát-tető, is in fact one of the youngest features in the field, and formed after basin inversion had largely dried out the area.

6. Conclusion

When comparing the existing data set of conventional K/Ar ages with new high resolution 40Ar/39Ar ages for the volcanism in the western Hungarian alkaline basaltic, intracontinental volcanic fields, we may conclude that the two methods yielded consistent results, provided that the samples are simple groundmass samples with limited alteration and limited excess 40Ar or extraneous 40Ar contained in phenocrysts. The similarity has confirmed that in an absolute sense the timing of the Neogene volcanic events inferred for the Bakony–Balaton and Little Hungarian Plain volcanic fields is correct. However, in addition, we demonstrate the potential of 40Ar/39Ar dating for establishing volcanic stratigraphies for individual centres. The significant difference between the two methods is the analytical uncertainty, which is an order of magnitude less for 40Ar/39Ar dating, and the more consistent check for sample homogeneity. However, as we are dealing here with the products of explosive volcanism, some of the material used for dating was highly fragmented during formation: some of the fragments can easily be recognized as bombs formed upon eruption, but other fragments particularly in diatremes and scoria cones cannot easily be characterized by morphology. In such cases it may not be possible to distinguish syn-extrusive bomb fragments from shattered intrusions from deeper down in the plumbing system. Thus, the real geological problems may cause a larger range in expected ages and thus the increased precision of the 40Ar/39Ar method also should be complemented with more and more focused field research in order to interpret the isotopic results.

The 40Ar/39Ar ages confirm that:

1. Volcanic activity peaked around 4 million years ago during perhaps 2 periods of intensified activity that affected several centers. The older Tihany–Hegyes-tû period at 7.95 Ma was of more limited importance, both in areal extent and in volume of magmatism.

2. Volcanism occurred near-synchronously at multiple locations at times during the history of the volcanic field: first at ~7.95 Ma (n=2, at Tihany and Hegyes-tû), at ~4.1 Ma (n=5, at Halom-hegy, Szent György-hegy, Hegyes, Vár-hegy, and Sümeg-praga), at ~3.8 Ma (n=3, at Halom-hegy, Hajágos, and Fekete-hegy), and at 3.0 Ma (n=2, at Agár-tető, and Haláp).

3. There are no clear spatial patterns in the distribution and timing of volcanism in western Hungary. There may have been though a slight east to west shift in the location of vents with time.

4. The very low analytical uncertainties of the 40Ar/39Ar dates allow us to distinguish volcanic events at closely spaced centres to provide better understanding of rejuvenation of volcanic eruption centres at the same place (Kissomlyó vs. Ság-hegy), and may also be used with success to confirm more prolonged activity at individual sites, and thus may cast doubt on whether this type of volcanism is truly ‘monogenetic’.

5. The dated volcanoes erupted at a time of lowstand in the nearby Pannonian Lake, and despite the abundant evidence to support a water-rich eruptive environment (Ság-hegy, Kissomlyó, Tihany) these volcanoes are inferred to have erupted in a subaerial phreatic zone adjacent to the lake itself.

7. Uncited references

Bada and Horváth, 2001
Horváth and Tari, 1999
Webb et al., 2004

Acknowledgments

This project is part of the ISES-1 scientific program of the Vrije University (granted partly to JW). Partial financial support from the DAAD German–Hungarian
Academic Exchange Program to UM and KN, the Hungarian Science Foundation OTKA F 043346 granted to KN, the Hungarian Science Foundation OTKA T 043344 granted to BK, the Magyary Zoltán Postdoctoral Fellowship and the New Zealand Science and Technology Postdoctoral Fellowship grants to KN are acknowledged. Review of an earlier version of the manuscript by Tibor Dunai (University of Edinburgh) is also acknowledged. The project has benefited from discussion with Gábor Csillag and Tamás Budai both from the Geological Institute of Hungary. Constructive reviews by James D.L. White (Otago University, Dunedin) and an anonymous referee helped to clarify many aspects of this paper, many thanks for them.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.jvolgeores.2007.05.009.

References

40Ar/39Ar geochronology of Neogene phreatomagmatic volcanism in the western Pannonian Basin, Hungary

Németh, Károly
2007