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Abstract. In this paper a stochastic model for the simultaneous growth and division
of a cell-population cohort structured by size is formulated. This probabilistic approach
gives straightforward proof of the existence of the steady-size distribution and a simple
derivation of the functional-differential equation for it. The latter one is the celebrated
pantograph equation (of advanced type). This firmly establishes the existence of the
steady-size distribution and gives a form for it in terms of a sequence of probability distri-
bution functions. Also it shows that the pantograph equation is a key equation for other
situations where there is a distinct stochastic framework.
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1. Introduction. In this paper we revisit a cell growth model
developed by [7]. This model was originally developed to model plant cells
[8], however, it has found applications in tumour growth in humans [2]. A
feature of this model is that a well-known functional differential equation, the
pantograph equation (see [5], [13] for background), arises from a separation of
variables solution to a Fokker-Planck equation. Specifically, let n(x, t) denote
the number density functions of cells of size x at time t i.e.,for 0 ≤ a < b
the quantity

∫ b

a
n(x, t) dx is the number of cells of size between a and b at

time t, x is “a variable size” of the cells in the cohort, often taken as “DNA
content.” The cell growth process is modelled by a modified Fokker-Planck
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equation, setting the dispersion term to zero for simplicity, of the form

∂

∂t
n(x, t) = − ∂

∂x
(gn(x, t)) + α2Bn(αx, t)

− (B + µ)n(x, t),(1)

where g is the rate of growth, µ is the rate of death, and B is the rate at
which cells divide into α equally sized daughter cells. Here, α > 1 is the
“multiplicity of division”, that is cells of size x divide to give α cells of size
x/α. The first term on the right hand side of (1) is the growth term; the
second is the addition to the cohort at size x from division of bigger size
αx with frequency B; and the last is the loss term from this cohort due to
division to cells of size x/α (also with frequency B), and the death of cells
with a per capita death rate of µ. For the original model that we study here
g, µ and B are positive constants. It is conceded that the assumption that
B, in particular, is constant is not in fact biologically realistic, see sections
I.4 and III.4.2 in [12]. However, we made this assumption so as to explore
the deeper connections with the classical pantograph equation. The partial
differential equation (1) is supplemented by the boundary conditions

lim
x→∞

n(x, t) = 0;(2)

lim
x→∞

∂

∂x
n(x, t) = 0;(3)

n(0, t) = 0.(4)

In fact we need only the boundary condition (4): as (2) and (3) follow as
consequences when n(x, t = 0) = n0(x) satisfy these conditions. The steady
size distributions (SSDs) for the number density function correspond to so-
lutions of the form n(x, t) = N(t)y(x) (i.e., separable solutions). Solutions
of this form yield

N ′(t)

N(t)
= −gy

′(x)

y(x)
+ α2By(αx)

y(x)
− (B + µ)

= Λ,

where Λ is a constant of separation and ′ denotes differentiation with respect
to the indicated argument. The above relation yields

N(t) = N0e
Λt,(5)

where N0 is a constant, and the equation

−gy′(x) + α2By(αx)− (B + µ) y(x) = Λy(x).(6)
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Under suitable scaling (e.g. by choosing N0 =
∫∞
0
n0(x)dx) a solution y ∈

L1[0,∞) to equation (6) corresponds to a probability density function in the
model. The boundary conditions (2)- (4) imply that

lim
x→∞

y(x) = 0,(7)

lim
x→∞

y′(x) = 0,(8)

y(0) = 0,(9)

and requirement that y be a probability density function leads to the condi-
tions y(x) ≥ 0 for all x ∈ [0,∞) and∫ ∞

0

y(x) dx = 1.(10)

Integrating equation (6) from 0 to ∞ gives

Λ = (α− 1)B − µ,

and equation (6) reduces to

gy′(x) + αBy(x)− α2By(αx) = 0.(11)

Equation (11) is a special case of the pantograph equation, which has been
studied extensively. A detailed analysis can be found in [11]. The pantograph
equation has found applications ranging from a partition problem in number
theory to the collection of current in an electric train. The reader is directed
to [10] for an overview of the literature and further analysis of the equation.

There are two other problems where the pantograph equation plays a
central rôle that have a distinct statistical flavour, viz. the absorption of
light in the Milky Way, [1] and a ruin problem in risk theory, [6]. Although
these problems seem distant from the cell growth model, there is nonetheless a
concrete link: all these models are based on the same type of pseudo Poisson
process; consequently, they have the same limit distribution. The link is
more transparent using an approach of [4] that is based on a probabilistic
technique (see [3]). In the next section we detail this approach and recover
some known results about the cell growth model in a fundamentally different
framework. Specifically, we give a straightforward proof of the existence
of an SSD, the derivation of the pantograph equation for this distribution
(invariant measure) and a solution in the form of a sequence of probability
distribution functions.
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2. Limit Distribution for Cell Growth. Consider a spatially
homogeneous population of cells and suppose that the size x of a cell grows
linearly as a function of time. Suppose further that at random moments
defined by a Poisson process a cell of size x splits into α new cells of size x/α.
Again we concede that in reality, for the most part, cells only divide in two
and the resulting daughter cells are not exactly the same size. Asymmetrical
division of cells is currently under investigation. Here, α ≥ 1. Specifically,
we suppose that the jumps x→ x/α occur in random moments

0 = t0 < t1 < · · · < tn < · · · ,

where the sequence {τn} defined by

τn = tn+1 − tn,

for n = 1, 2, . . . consists of independently and exponentially distributed ran-
dom variables, i.e., for t > 0,

P{τn > t} = e−t.

For simplicity, we assume that the between jumps the cell size x has a unit
rate of growth so that after ∆t time a cell of size x grows to size x + ∆t.
This assumption corresponds to choosing B and g such that αB/g = 1 in the
Fokker-Planck equation. The results detailed below follow mutatis mutandis
for a more general choice of constants.
Lemma 1. There exists a limit distribution (invariant measure) for the size
of a cell. This distribution is independent of the initial cell size x0.

Proof. Consider a cell of initial size x0 that splits (jumps) at randommoments
t1, t2, . . . , tn, . . .. Let tn− denote the moment immediately before the nth
splitting. The size of a cell at t1− is

x(t1−) = x0 + τ1.

The cell then splits into α equal parts at t1 so that at t2− the size is

x(t2−) =
1

α
(x0 + τ1) + τ2.

Similarly, at t3−

x(t3−) =
1

α

(
1

α
(x0 + τ1) + τ2

)
+ τ3

=
x0
α2

+ τ3 +
τ2
α

+
τ1
α2
,
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and in general

x(tn−) =
x0
αn−1

+ τn +
τn−1

α
+ · · ·+ τ1

αn−1
.(12)

Equation (12) shows that there exists a limit distribution for cell size x as
n→ ∞ and that this distribution is independent of the initial cell size x0. In-
deed, the limit distribution function coincides with a probability distribution
function of the random variable

Z = η0 +
η1
α

+
η2
α2

+ · · ·+ ηn
αn

+ · · · ,(13)

where the ηk are independently, exponentially distributed random variables.

Let

F (x) = Fτn(x) = 1− P{τn > x} =

{
1− e−x, x > 0
0, x ≤ 0,

(14)

p(x) = pτn(x) = F ′(x) =

{
e−x, x > 0
0, x < 0.

(15)

Denote the probability distribution function (pdf) for (13) by z(x) and let
y(x) = z′(x). The function y thus corresponds to the probability density
function for (13). The next theorem shows that the probability density func-
tion defined by (13) satisfies the pantograph equation (11) with αB/g = 1
and y(0) = 0.
Theorem 1. The probability distribution function for (13) satisfies

z′(x) + z(x) = z(αx)(16)

z(0) = 0;

the probability density function for (13) satisfies

y′(x) + y(x) = αy(αx)(17)

y(0) = 0.

Proof. The proof follows a method developed by [4], which is based on the
self-similarity of Z. In particular, equation (13) can be recast

Z = η0 +
1

α

(
η1 +

η2
α

+
η3
α2

+ · · ·
)
= η0 +

1

α
Z1,(18)

where Z1 has the same distribution as Z.
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Given random independent variables w1 and w2 with pdfs G1(x) and
G2(x) respectively, the pdf of their sum w1 + w2 is given by the Stieltjes
convolution (see [9])

(G1#G2)(x) =

∫ ∞

−∞
G1(x− t) dG2(t).

In addition, for any β > 0 the pdf of βG1 is G1(x/β). The pdf for Z1/α is
therefore z(αx) and the pdf for η0 is F (x). Equation (18) thus implies

z(x) = z(αx)#F (x).(19)

The Stieltjes convolution (19) can be expressed as a Laplace convolution.
Since z(x) = 0 for x ≤ 0 and dF (x) = p(x) dx,

z(αx)#F (x) =

∫ x

0

z(α(x− t))e−t dt;

consequently,

z(x) = z(αx) ∗ p(x),(20)

where ∗ denotes the Laplace convolution. Now,

z′(x) = z(0)e−x + α

∫ x

0

z′(α(x− t))e−t dt,

and noting that z(0) = 0 integration by parts yields

z′(x) = α

{
−e

−t

α
z(α(x− t))

∣∣∣∣x
0

− 1

α

∫ x

0

z(α(x− t))e−t dt

}
= z(αx)− z(x).

We thus see that z satisfies (16). Equation (17) follows immediately from
(16) by differentiation noting that z′(0) = 0.

3. A Solution Method. [11] showed that problems such as (16) and
(17) do not have unique solutions. Indeed, there are an infinite number of
solutions to these problems. The requirement that solutions to (16) are also
probability distribution functions, however, resolves this uniqueness problem.
In essence, there is only one solution to (16) such that

lim
x→∞

z(x) = 1.(21)
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A similar comment applies to problem (17) if condition (10) is imposed.
These uniqueness results can be found in [6] and [7].

Problems such as (16) and (17) can be solved using Dirichlet series or,
what leads to the same thing, Laplace transforms (cf. [6], [10] and [11]).
Solutions to these problems can thus be expressed in the form

z(x) =
∞∑
n=1

ane
−αnx,

y(x) =
∞∑
n=1

−αnane
−αnx.

The probabilistic interpretation detailed in Section 2, however, brings to
the fore a different solution method. This method entails a sequence gener-
ated by convolutions. We focus exclusively on the probability distribution
function.

Let {zn} be the sequence defined by

z0(x) = 1− e−x

zn+1(x) = zn(αx)#F (x),(22)

where n ≥ 0 and x ≥ 0. We show that this sequence converges to a probabil-
ity distribution function z that is a solution to problem (16). One advantage
of this method is that the approximations to the solution preserve the statis-
tical structure of the problem. Each term of the sequence is a pdf, and it is
clear from the definition of the sequence that zn corresponds to the pdf for
the random variable at the nth splitting.
Lemma 2. The sequence {zn} converges uniformly on intervals of the form
I = [0, a], where a > 0.

Proof. We note first that

zn+1(x) = zn(αx)#F (x)

=

∫ x

0

zn(α(x− ξ))e−ξ dξ.(23)

Since z0 is continuous on [0,∞) it is clear that zn is also continuous on this
interval for all n ≥ 1. For any continuous function f : [0,∞) → R and b > 0
let

∥f∥b = sup
ξ∈[0,b]

|f(ξ)|.
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It is sufficient to show that the series

∞∑
n=0

(zn+1(x)− zn(x))(24)

is uniformly convergent on I. For x ∈ I,

|zn+1(x)− zn(x)| ≤
∫ x

0

|zn(α(x− ξ))− zn−1(α(x− ξ))| e−ξ dξ

≤ ∥zn − zn−1∥αxΛ,

where

Λ = 1− e−a.

The above calculation can be repeated to show that

|zn+1(x)− zn(x)| ≤ ∥z1 − z0∥αnaΛ
n.(25)

We have

z1(x) = z0(x)−
e−x − e−αx

α− 1
,(26)

so that for all x ∈ [0,∞)

|z1(x)− z0(x)| ≤
1

α− 1
.(27)

Inequalities (25) and (27) thus give

∥zn+1 − zn∥αna ≤
1

α− 1
Λn.(28)

Since 0 < Λ < 1, the Weierstrass M test can be used to show that the series
converges uniformly on I.

Lemma 3. Each term of the sequence {zn} is a pdf that is differentiable on
[0,∞). The limit of the sequence is also a pdf.

Proof. The sequence {zn} is defined by a convolution with a pdf F (x). Since
z0(x) is a pdf, z0(αx) is also a pdf. Now, z1(x) = z0(αx)#F (x). Since z1
is defined by the convolution of two pdfs, z1 must also be a pdf (cf. [14,
p. 37]). The argument can be repeated to show that zn must be a pdf for all
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n ≥ 1. Each zn is continuous on [0,∞). Equation (23) and the Fundamental
Theorem of Calculus therefore imply that the zn are differentiable and

z′n+1(x) = α

∫ x

0

z′n(α(x− ξ))e−ξ dξ.(29)

Lemma 2 shows that there is a z such that zn(x) → z(x) as n → ∞
for x ∈ [0,∞). To show that z must be a pdf we study the characteristic
functions associated with the zn. The characteristic function of zn is given
by

ϕn(t) =

∫ ∞

0

eitξz′n(ξ) dξ.

Equation (22) implies that

ϕn+1(t) = Qn(t)ψ(t),

where Qn is the characteristic function for zn(αx) and

ψ =
1

1− it

is the characteristic function for F . Now,

Qn(t) =

∫ ∞

0

eitξdzn(αξ)

=

∫ ∞

0

eitξ/αz′n(ξ) dξ

= ϕn(t/α);

therefore,

ϕn+1 =
1

1− it
ϕn(t/α),

and consequently

ϕn+1 =
n+1∏
k=0

(
1− it

αk

)−1

.

The product

∞∏
k=0

(
1− it

αk

)−1
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converges uniformly on all compact intervals of R;hence,

ϕn(t) → ϕ(t) =
∞∏
k=0

(
1− it

αk

)−1

,

where ϕ is continuous on R. We can now appeal to a standard result in
probability theory (cf. [14, p. 42]) that guarantees the existence of a unique
pdf z corresponding to ϕ; moreover, zn → z as n→ ∞.

Theorem 2. Let z denote the limit of the sequence defined by (22). Then z
is the unique solution to equation (16).

Proof. Integrating the right hand side of equation (29) by parts gives

z′n+1(x) = zn(αx)− zn+1(x).(30)

Now,

|z′n+1(x)− z′n(x)| = |zn(αx)− zn+1(x)− (zn−1(αx)− zn(x))|
≤ |zn(αx)− zn+1(x)|+ |zn−1(αx)− zn(x)|,

and since {zn} is uniformly convergent on I, the above inequality shows that
{z′n} is uniformly convergent on I. We thus have that z is differentiable on
I and that z′n → z′ as n → ∞. Equation (30) therefore implies that z is a
solution to equation (16).

The uniqueness of solutions to equation (16) satisfying the given bound-
ary conditions has been established in [6] and [7]. For completeness, however,
we give a proof.

Suppose that there are two distinct solutions z and w to the boundary-
value problem. Let δ = z − w. Then

δ′(x) = δ(αx)− δ(x)(31)

δ(0) = 0(32)

lim
x→∞

δ(x) = 0.(33)

By hypothesis, the solutions are distinct and therefore δ(x) ̸= 0 for some x >
0. Without loss of generality we can assume that δ(x) > 0 for some x > 0.
Now, δ is differentiable, a fortiori, continuous for x ≥ 0, and the boundary
conditions (32) and (33) imply that there exists a global maximumM at some
point 0 < xm <∞. We thus have M = δ(xm) > 0 and δ′(xm) = 0. Equation
(33) implies that δ(αxm) = δ(xm); therefore, the global maximum must also
be achieved at αxm. The arguments can be repeated to show that the global
maximum is achieved at αnxm for all n ≥ 0; consequently, δ(αnxm) = M .
Since M ̸= 0, we have the contradiction that limx→∞ δ(x) ̸= 0. We thus
conclude that δ(x) = 0 for all x > 0.
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