Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
PRODUCTION OF AN ENZYMIC CASEIN HYDROLYSATE
USING A CONTINUOUS MEMBRANE BIOREACTOR

A thesis presented in partial fulfilment of the requirements for the degree of Master of Technology in Biotechnology and Bioprocess Engineering at Massey University

JULIE MAREE O'SULLIVAN

1995
To Derek, Ryan and Lauren
ABSTRACT

Milk protein hydrolysates suitable for inclusion in hypoallergenic infant formulae should, in general, contain no material greater than 5000 daltons molecular weight and have less than 10% free amino acids. The aim of this study was to investigate the suitability of a continuous stirred tank membrane bioreactor for the production of such a hydrolysate from casein.

Thirteen commercial protease preparations were evaluated for their effect on casein. The most suitable enzymes for production of the target hydrolysate were selected on the basis of molecular weight profiles obtained by the use of high performance size exclusion chromatography. Novo Alcalase 2.4L and Amano Protease A were selected for the bioreactor experiments.

Hollow fibre polysulphone and spiral wound cellulose acetate membranes, each with nominal molecular weight cut off values of 10,000 and 30,000 daltons, were evaluated for their potential effectiveness in the bioreactor system. The spiral wound membrane with a nominal molecular weight cut off of 30,000 daltons was selected for the bioreactor experiments on the basis of molecular weight profiles of permeates obtained from the ultrafiltration of a casein hydrolysate. This membrane had a high flux, gave the highest recovery of peptides, was not susceptible to particulate fouling and gave the most desirable permeate molecular weight profile relative to the target product.

The effect of hydraulic residence time on the molecular weight profile of products produced using the bioreactor and on the productivity of the bioreactor was investigated. Using Amano Protease A and a short hydraulic residence time it was possible to produce a casein hydrolysate with a low proportion of free amino acids and a large proportion of material in the molecular weight range 3000-5000 daltons. Although the hydrolysate produced contained a small amount of material (approximately 2%) greater than 5000 daltons molecular weight, in all other respects the molecular weight profile of this hydrolysate met the criteria defined above.
ACKNOWLEDGEMENTS

I would like to acknowledge and thank the following people.
Dr Ian Maddox for his patience and guidance.
Dr Rex Humphrey for his scientific guidance and enthusiasm.
Ms Denise Hughes, Ms Jan Wilkinson, Ms Marlene Tsao and the staff of the New Zealand Dairy Research Institute's Analytical Chemistry Laboratory for analytical services.
Mr Peter Hobman and Mr Ramsey Southward for encouraging me to study for my Masterate and supporting my application, and Dr Richard Archer for continuing that encouragement and support.
Dr Mike Boland for useful discussions to select a topic for study and for his support.
Mrs Anne Singh for establishing and maintaining an excellent literature database and for her encouragement and advice.
Dr Rose Motion for teaching me about the molecular weight profiling of protein hydrolysates.
Mr Neal VanDegrift, Dr Chao Wu and Ms Marsha Swartz for useful discussions throughout the course of the work.
Dr Michael Weeks for useful discussions on the transfer of data from Maxima to Quattro Pro.
Dr Mark Pritchard for checking some of the text of this manuscript.
Mr Brent Vautier for his advice on the practicalities of Masterflex pumps.
Mrs Lynette Dyer for help with formatting some of the text.
My colleagues at the New Zealand Dairy Research Institute and the New Zealand Dairy Board for their friendship.
My family, especially my mother, for their support and encouragement.
Tatua Biologics Ltd. for the use of their laboratory and equipment.
Dr Claire Woodhall for proof reading this manuscript.

Ms Josette Howell and Mrs Philippa Smith for performing on-line literature searches.

Mrs Nan Cowan for checking the Table of Contents and lists of figures, tables and abbreviations and for help with copying and collating this manuscript.

The financial support of the New Zealand Dairy Board and the New Zealand Dairy Research Institute is also gratefully acknowledged.

Finally, I would especially like to thank my husband Dr Derek Knighton for his patience, encouragement and scientific advice.

I have dedicated this thesis to my husband and our children, Ryan and Lauren, in recognition of the many, many hours (sometimes weeks) that I have missed with them while I worked on this project.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS OF UNITS</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF OTHER ABBREVIATIONS</td>
<td>xix</td>
</tr>
<tr>
<td>CHAPTER 1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>CHAPTER 2 LITERATURE REVIEW</td>
<td>7</td>
</tr>
<tr>
<td>2.1 Protein Hydrolysates in Infant Formulae</td>
<td>7</td>
</tr>
<tr>
<td>2.1.1 Milk-protein-based infant formulae</td>
<td>7</td>
</tr>
<tr>
<td>2.1.2 Protein-hydrolysate-based formulae</td>
<td>8</td>
</tr>
<tr>
<td>2.1.3 The case for prophylactic use of protein-hydrolysate-based infant formulae</td>
<td>10</td>
</tr>
<tr>
<td>2.1.4 Defining the DH of protein-hydrolysate-based formulae</td>
<td>12</td>
</tr>
<tr>
<td>2.1.5 Manufacturing procedures for protein hydrolysates for use in hypoallergenic infant formulae</td>
<td>16</td>
</tr>
<tr>
<td>2.1.6 The physiological role of milk-protein-based peptides</td>
<td>17</td>
</tr>
<tr>
<td>2.1.7 The "ideal" protein hydrolysate for use in hypoallergenic infant formulae</td>
<td>18</td>
</tr>
<tr>
<td>2.2 Protein Hydrolysate Production Using a Continuous Membrane Bioreactor</td>
<td>19</td>
</tr>
</tbody>
</table>
2.2.1 A comparison of batch and continuous hydrolysis processes 19
2.2.2 The continuous stirred tank membrane reactor (CSTMR) 22
2.2.3 Selection of enzymes for use in continuous hydrolysis processes 32
2.2.4 The effect of membrane choice on the continuous hydrolysis process 35
2.2.5 Analysis of the molecular weight distribution of hydrolysis products 37
2.2.6 The effect of residence time on the molecular weight distribution of CSTMR products 39
2.2.7 The measurement of bioreactor productivity 40
2.2.8 Patented CSTMR processes for milk protein hydrolysis 40

CHAPTER 3 ENZYME SCREENING 41
3.1 Introduction 41
3.2 Materials and Methods 41
3.2.1 Materials 41
3.2.1.1 Enzymes 41
3.2.1.2 Substrate 42
3.2.1.3 Chemicals 42
3.2.2 Methods 43
3.2.2.1 Selection of enzymes for screening 43
3.2.2.2 Hydrolysis experiments at constant pH 43
3.2.2.3 Storage and sampling 44
3.2.2.4 Analytical methods 46
3.2.2.5 pH-drop experiments 47
3.3 Results 48
3.3.1 Notes on the interpretation of MWPs 48
3.3.2 Time series MWPs and DH curves

3.3.2.1 Rohm Corolase N 49
3.3.2.2 Biocon Fungal Protease 49
3.3.2.3 Novo Neutrase 0.5L 50
3.3.2.4 Novo Alcalase 2.4L 50
3.3.2.5 Rohm Corolase 7089 50
3.3.2.6 Amano Protease A 50
3.3.2.7 Amano Protease B 50
3.3.2.8 Amano Papain 51
3.3.2.9 Rohm Corolase S50 51
3.3.2.10 Rohm Bromelain 51
3.3.2.11 Amano Bromelain 51
3.3.2.12 Rhozyme P64 51
3.3.2.13 Rhozyme P41 52

3.3.3 pH-drop curves 52

3.4 Discussion 82

3.5 Conclusions 84

CHAPTER 4 MEMBRANE SCREENING

4.1 Introduction 85

4.2 Materials and Equipment

4.2.1 Enzyme 86
4.2.2 Substrate 86
4.2.3 Chemicals 86
4.2.4 Equipment 86

4.3 Methods 87

4.3.1 Test hydrolysate preparation 87
4.3.2 Membrane cleaning and storage 87
4.3.3 Membrane evaluation method 88
4.3.4 Analytical methods 90

4.4 Results 90
4.4.1 Hollow fibre membranes 97
4.4.2 Spiral wound membranes 97
4.5 Discussion 98
4.6 Conclusions 100

CHAPTER 5 CONTINUOUS BIOREACTOR EXPERIMENTS 101
5.1 Introduction 101
5.2 Materials and Equipment 102
 5.2.1 Enzymes 102
 5.2.2 Substrate 102
 5.2.3 Chemicals 102
 5.2.4 Equipment 103
5.3 Methods 103
 5.3.1 CSTMR experiments 103
 5.3.2 Batch experiments 105
 5.3.3 Analytical methods 106
5.4 Results 106
 5.4.1 CSTMR experiments 106
 5.4.1.1 CSTMR 1 107
 (Alcalase 2.4L, HRT = 160 min)
 5.4.1.2 CSTMR 2 118
 (Alcalase 2.4L, HRT = 100 min)
 5.4.1.3 CSTMR 3 118
 (Amano Protease A, HRT = 110 min)
 5.4.1.4 CSTMR 4 119
 (Amano Protease A, HRT = 50 min)
 5.4.2 Batch experiments 119
5.5 Discussion 122
5.6 Conclusions 129
LIST OF FIGURES

Figure 1.1 A general scheme for the manufacture of a milk protein hydrolysate. 6
Figure 2.1 Molecular weight distribution graphs drawn from the hydrolysate classification scheme of Mahmoud (1994). 15
Figure 2.5 Dead-end cell membrane reactor (Cheryan & Deeslie, 1980). 24
Figure 2.6 The continuous stirred tank membrane reactor. 25
Figure 2.7 Two-step hydrolysis and ultrafiltration process (Turgeon & Gauthier, 1990). 26
Figure 3.1 Time series MWP for Rohm Corolase N. 53
Figure 3.2 Base consumption and DH curves for Rohm Corolase N. 54
Figure 3.3 Time series MWP for Biocon Fungal Protease. 55
Figure 3.4 Base consumption and DH curves for Biocon Fungal Protease. 56
Figure 3.5 Time series MWP for Novo Neutrase 0.5L. 57
Figure 3.6 Base consumption and DH curves for Novo Neutrase 0.5L. 58
Figure 3.7 Time series MWP for Novo Alcalase 2.4L. 59
Figure 3.8 Base consumption and DH curves for Novo Alcalase 2.4L. 60
Figure 3.9 Time series MWP for Rohm Corolase 7089. 61
Figure 3.10 Base consumption and DH curves for Rohm Corolase 7089. 62
Figure 3.11 Time series MWP for Amano Protease A. 63
Figure 3.12 Base consumption and DH curves for Amano Protease A. 64
Figure 3.13 Time series MWP for Amano Protease B. 65
Figure 3.14 Base consumption and DH curves for Amano Protease B.
Figure 3.15 Time series MWP for Amano Papain.
Figure 3.16 Base consumption and DH curves for Amano Papain.
Figure 3.17 Time series MWP for Rohm Corolase S50.
Figure 3.18 Base consumption and DH curves for Rohm Corolase S50.
Figure 3.19 Time series MWP for Rohm Bromelain.
Figure 3.20 Base consumption and DH curves for Rohm Bromelain.
Figure 3.21 Time series MWP for Amano Bromelain.
Figure 3.22 Base consumption and DH curves for Amano Bromelain.
Figure 3.23 Time series MWP for Rhozyme P64.
Figure 3.24 Base consumption and DH curves for Rhozyme P64
Figure 3.25 Time series MWP for Rhozyme P41.
Figure 3.26 Base consumption and DH curves for Rhozyme P41
Figure 3.27 pH-drop curves for the enzymes screened (Part 1).
Figure 3.28 pH-drop curves for the enzymes screened (Part 2).
Figure 3.29 Graph showing the relationship between pH-drop and initial reaction rate for each enzyme.
Figure 4.1 Schematic diagrams of the hollow fibre and spiral wound membrane configurations: (a) Hollow fibre membrane module (Amicon, 1994) and (b) spiral wound membrane module (Amicon, 1992).
Figure 4.2 Ultrafiltration membranes fluxes.
Figure 4.3 Feed, retentate and permeate MWPs for the 10,000 daltons MWCO hollow fibre membrane.
Figure 4.4 Feed, retentate and permeate MWPs for the 30,000 daltons MWCO hollow fibre membrane.
Figure 4.5 Feed, retentate and permeate MWPs for the 10,000 daltons MWCO spiral wound membrane.

Figure 4.6 Feed, retentate and permeate MWPs for the 30,000 daltons MWCO spiral wound membrane.

Figure 4.7 Permeate MWPs for all membranes (scaled).

Figure 5.1 Sketch of bioreactor set-up.

Figure 5.2 MWPs of permeate samples taken during CSTMR 1 (HRT = 160 min).

Figure 5.3 MWPs of reaction vessel and bulk permeate samples taken at the end of CSTMR 1 (HRT = 160 min).

Figure 5.4 MWPs of permeate samples taken during CSTMR 2 (HRT = 100 min).

Figure 5.5 MWPs of reaction vessel and bulk permeate samples taken at the end of CSTMR 2 (HRT = 100 min).

Figure 5.6 MWPs of permeate samples taken during CSTMR 3 (HRT = 110 min).

Figure 5.7 MWPs of reaction vessel and bulk permeate samples taken at the end of CSTMR 3 (HRT = 110 min).

Figure 5.8 MWPs of permeate samples taken during CSTMR 4 (HRT = 50 min).

Figure 5.9 MWPs of reaction vessel and bulk permeate samples taken at the end of CSTMR 4 (HRT = 50 min).

Figure 5.10 % Conversion of total nitrogen for the CSTMR experiments.

Figure 5.11 Permeate flowrates for the CSTMR experiments.

Figure 5.12 Batch 1 (Alcalase 2.4L, 150 min hydrolysis): Feed, permeate and retentate MWPs (scaled).

Figure 5.13 Batch 2 (Amano Protease A, 120 min hydrolysis): Feed, permeate and retentate MWPs (scaled).

Figure 5.14 MWPs of the batch hydrolysis and CSTMR products made using Alcalase 2.4L.
Figure 5.15 MWPs of the batch hydrolysis and CSTMR products made using Amano Protease A.
LIST OF TABLES

Table 2.1 Classification of protein hydrolysates (Mahmoud, 1994) 14
Table 2.2 Bioactive peptides derived from bovine milk proteins (Meisel & Schlimme, 1990) 17
Table 2.3 Summary of continuous proteolysis studies 27
Table 2.4 Summary of methods used to characterize continuous hydrolysis products by their molecular weight distribution 38
Table 3.1 Summary of enzymes assessed, conditions used and analyses performed 45
Table 3.2 Molecular weight standards used for MWP analysis 47
Table 3.3 Characteristics of the low molecular weight range of MWPs 49
Table 3.4 Summary of the characteristics of the action of various proteases on casein as determined from MWP analysis 83
Table 4.1 Permeate flowrates, permeate and retentate total solids and fluxes for hollow fibre and spiral wound membranes 90
Table 5.1 Summary of CSTMR experiments 107
Table 5.2 Summary of results from batch hydrolysis experiments 119
Table 5.3 Summary of the CSTMR and batch hydrolysis experiments 123
Table A1 Composition of Alacid Acid Casein (Factory 1032, Batch J4176) 145
Table A2 Base consumption and DH for enzyme screening experiments 147
Table A3 Raw data from pH-drop experiments 152
Table A4 Permeate flowrates and flux calculations for various ultrafiltration membranes tested with a casein hydrolysate

Table A5 CSTMR Experiment 1 (Alcalase 2.4L, HRT = 160 minutes): Permeate flowrates, NaOH addition, total solids, total nitrogen and residual active protease results

Table A6 CSTMR Experiment 2 (Alcalase 2.4L, HRT = 100 minutes): Permeate flowrates, NaOH addition, total solids, total nitrogen and residual active protease results

Table A7 CSTMR Experiment 3 (Amano Protease A, HRT = 110 minutes): Permeate flowrates, NaOH addition, total solids, total nitrogen and residual active protease results

Table A8 CSTMR Experiment 4 (Amano Protease A, HRT = 50 minutes): Permeate flowrates, NaOH addition, total solids, total nitrogen and residual active protease results

Table A9 Batch hydrolysis experiments: base consumption, total solids, total nitrogen and residual active protease results
LIST OF ABBREVIATIONS OF UNITS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>degrees Celsius</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>h</td>
<td>hour</td>
</tr>
<tr>
<td>kPa</td>
<td>kiloPascal</td>
</tr>
<tr>
<td>L</td>
<td>litre</td>
</tr>
<tr>
<td>m</td>
<td>metre</td>
</tr>
<tr>
<td>µm</td>
<td>micrometre</td>
</tr>
<tr>
<td>mg</td>
<td>milligram</td>
</tr>
<tr>
<td>min</td>
<td>minute</td>
</tr>
<tr>
<td>ml</td>
<td>millilitre</td>
</tr>
<tr>
<td>mm</td>
<td>millimetre</td>
</tr>
<tr>
<td>mol%</td>
<td>percent of peptides by number</td>
</tr>
<tr>
<td>nm</td>
<td>nanometre</td>
</tr>
<tr>
<td>psi</td>
<td>pounds per square inch</td>
</tr>
<tr>
<td>v/w</td>
<td>volume/weight</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>w/w</td>
<td>weight/weight</td>
</tr>
<tr>
<td>w/v</td>
<td>weight/volume</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>CPP</td>
<td>casein phosphopeptide</td>
</tr>
<tr>
<td>CSTMR</td>
<td>continuous stirred tank membrane reactor</td>
</tr>
<tr>
<td>CSTR</td>
<td>continuous stirred tank reactor</td>
</tr>
<tr>
<td>DH</td>
<td>degree of hydrolysis</td>
</tr>
<tr>
<td>E:S</td>
<td>enzyme to substrate ratio</td>
</tr>
<tr>
<td>HPSEC</td>
<td>high performance size exclusion chromatography</td>
</tr>
<tr>
<td>HPLC</td>
<td>high performance liquid chromatography</td>
</tr>
<tr>
<td>HRT</td>
<td>hydraulic residence time</td>
</tr>
<tr>
<td>MW</td>
<td>molecular weight</td>
</tr>
<tr>
<td>MWCO</td>
<td>molecular weight cut off</td>
</tr>
<tr>
<td>MWP</td>
<td>molecular weight profile</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>sodium dodecyl sulphate-polyacrylamide gel electrophoresis</td>
</tr>
</tbody>
</table>