Analysis of spectral response patterns of Kiwifruit orchards using
satellite imagery to predict orchard characteristics of commercial value before harvest
A thesis presented in fulfilment of the requirements for the degree of PhD Prod Tech in the
School of Engineering and Advanced Technology, Massey University Linda Yvonne Mills 2015

Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

ABSTRACT

Several characteristics of kiwifruit determine its value to the kiwifruit marketing company, Zespri Ltd, and to the grower. The foremost of these is the dry matter content. Much effort is expended in predicting the final dry matter content of the fruit as early in the season as possible so that the optimal dry matter content can be achieved. Dry matter content is currently measured through a destructive 90-fruit protocol that may be repeated several times in a season on each maturity block.

Remote sensing data available from modern satellites can provide four-colour (red, green, blue and near-infrared) data with resolution down to 1-2m, less than the size of one kiwifruit vine. Many indices can be created from these and correlated to the characteristics of plants with indifferent results.

This thesis presents the development of an index wherein the four colours are used to create a three-dimensional unit colour vector that is largely independent of light level. This transform was used to allow the direct visualisation of data from a number of satellite images of the Te Puke kiwifruit growing area in New Zealand over five years, for which dry matter content values were available from the 90-fruit protocol.

An attenuation model was chosen to correct the top-of-atmosphere light intensities recorded by the satellite cameras to those at ground level. The method of Hall *et al.*, (1991) was found to reduce the variation of fiduciary pixels by the largest amount and was used.

The visualisation revealed that there was an axis along which dry matter was ordered by magnitude. A regression line of best fit was applied to this data producing an R² value of 0.51 with a standard mean-square error of 0.76. This is significantly lower than the average mean-square error of 1.05 for the 90-fruit protocol.

Comparison of the predictive power of other indices, based on one image, showed a range of R² values of 0.008 to 0.49. The method developed in this thesis produced an R² of 0.70 for the same data.

CERTIFICATE OF AUTHORSHIP

I, Linda Mills, hereby declare that this submission is my own work and that to the best of my knowledge and belief, it contains no material previously published or written by another person nor material which to a substantial extent has been accepted for the award of any other degree or diploma of a university or other institution of higher learning, except where due acknowledgement is made.

Linda Mills

ACKNOWLEDGEMENTS

Supervisors:

Dr Rory Flemmer, School of Engineering and Advanced Technology, Massey University Dr Huub Bakker, School of Engineering and Advanced Technology, Massey University

Funding and Data support:

Zespri International Limited, Mount Maunganui, New Zealand AgFirst, Katikati , New Zealand

Trevelyans Pack and Cool, Te Puke, New Zealand

DMS Progrowers Ltd, Tauranga, New Zealand

Andrew Jonkers, Brisbane, Australia

Editing and Sanity support:

My daughters-in-law Carly and Ruth and my husband Doug.

TABLE OF CONTENTS

LIST OF FIG	SURES	6
LIST OF TAI	BLES	7
ABBREVIAT	IONS AND DEFINITIONS	8
CHAPTER 1	INTRODUCTION	10
1.1 Intro	oduction	10
1.2 The	New Zealand Kiwifruit Industry	10
1.3 Kiw	rifruit Orchards	14
1.3.1	Crop Characteristics and Revenue	17
1.3.1.1	Appearance	17
1.3.1.2	Taste	18
1.3.1.3	Size	22
1.3.1.4	Storage	22
1.3.1.5	Yield	22
1.3.2	Kiwifruit Canopy	23
1.4 Rer	mote Sensing	26
1.4.1	Precision Agriculture	26
1.4.2	Vegetation Analysis	27
1.4.3	Kiwifruit Photosynthesis	30
1.5 Wo	rking Hypotheses	33
CHAPTER 2	REVIEW OF LITERATURE	35
2.1 Intro	oduction	35
2.2 Rer	mote Sensing Options	35
2.3 Veg	getative Remote Sensing	37
2.3.1	Reflectance, chlorophyll and photosynthesis	37
2.3.2	Leaf Area and Photosynthetic Capacity	39
2.4 Indi	ices in Use	40
2.4.1	QuickBird Satellite Research	41
2.4.2	Research using other Satellite Systems	43
2.5 Atm	nosphere	47
2.5.1	Atmospheric Interference	47
2.5.2	Atmospheric Attenuation	48
2.6 Sur	mmary	52
CHAPTER 3	MATERIALS AND DATA PREPARATION	54
3.1 Intro	oduction	54
3.2 Mat	terials	54
3.2.1	Satellite Images	54
3.2.2	Digital Numbers (DNs)	57
3.2.3	Software	57
3.2.4	Test Orchards	58
3.2.4.1	Orchard Maps	59

3.2	2.4.2	Ground Based Orchard Data	60
3.2	2.4.2.1	Full Bloom Date	60
3.2	2.4.2.2	Average Size of Fruit	60
3.2	2.4.2.3	Dry Matter Data	61
3.3	Metho	odology for DN Extraction from images	63
3.3	3.1 K	iwisat DN Extraction	63
3.3	3.2	Seomatica validation	65
3.4	Data	Preparation	66
3.4	.1 T	op-of-Atmosphere DNs	66
3.4	.2 A	tmospheric Attenuation	67
3.4	.2.1	Method 1: Atmospheric Attenuation per Hall et al., 1991	71
3.4	.2.2	Method 2: Linear Attenuation	74
3.4	.3 E	valuation of Attenuation Methods	76
CHAPT	ER 4 D	ATA MODEL	77
4.1	Introd	uction	77
4.2	Regre	ession Analysis Formulae	82
4.3	Regre	ession Results for Dry Matter	85
4.3	3.1 N	Multi-temporal, Multi-image Regression	85
4.3	3.2 K	iwifruit variety and prediction from multi-image regression	87
4.3	3.3 Ir	ndividual image prediction from multi-image regression	88
4.4	Apply	ing a standard formula to predict dry matter	90
4.5	Visua	lising the solution – a worked example	91
4.6	Testir	ng the method on data that was not used in the teaching set	96
4.7	Comp	parison of this study to existing indices	97
4.8	Comp	parison of this study with current dry matter sampling system	101
4.9	Other	Predictive Functions Considered	101
4.10	Concl	usions	103
		LIST	
		ummary of Satellite Specifications	108
		ummary of the Characteristics of Ideal and Real Remote Sensing Systems I., 2004)	109
Append	lix 3: Sı	ummary of Indices Currently Used in Remote Sensing Research	112
		verage composition of the atmosphere up to an altitude of 25km and the ect by the atmosphere of radiation at different wavelengths	11/
•		aw image of study area captured May 2009	
		ATT ILLIAGO OL OLUAT ALOA CADLALOA ITIAT EUUT LUUT ILLIAGO ILLIAGO ILLIAGO ILLIAGO ILLIAGO ILLIAGO ILLIAGO ILLI	

LIST OF FIGURES

Figure 1: Four competing crop characteristics with differentiated financial returns	
Figure 2: Area of study, Te Puke, Bay of Plenty, New Zealand, May 2005	13
Figure 3: Kiwifruit orchard, Orchard #2, Te Puke, from May 2005 Satellite image	15
Figure 4: Orchard map for kiwifruit orchard, Orchard #2, Te Puke	16
Figure 5 (A)-(D): Consumer preference and repurchase intent for kiwifruit presented at difference	ent
dry matter levelsdry matter levels	20
Figure 6 (a)-(b): Kiwifruit canopy examples; (a) light, open canopy, (b) dark, closed kiwifruit	
canopy	23
Figure 7: The absorption spectrum of chlorophyll	28
Figure 8: The reflectance spectrum of vegetation compared to other features	
Figure 9: The reflectance spectrum of various types of vegetation	
Figure 10: Reflectance spectrum variance depending on leaf health (Brase, 2006)	
Figure 11: Leaf structure and utilisation of incident sunlight, (LED Digital Visuals, 2009)	
Figure 12 (a)-(b): Relationship between normalized (NIR/G)-1 (X) and relative grain yield (Y)	
(a) or relative total biomass (Y) in (b) calculated from QuickBird DN and Exotech ground-base	
reflectance values	43
Figure 13: Relationship between canopy leaf photosynthetic potential and ratio index	
R(810,680)	43
Figure 14 (a)-(b): NGRDI versus corn biomass (a) and soybean biomass (b)	44 44
Figure 15: Relationship between observed and predicted wheat yields at a national level,	
Morocco, 1990 through 2003	45
Figure 16: Overview of software utilisation	58
Figure 17: Range of dry matter by variety for test and out-of-test orchards	59
	62
Figure 19: Process flow for DN data extraction using Kiwisat software	63
Figure 20: Electronically tagged kiwifruit orchard blocks using Kiwisat software, Orchard #2,	
May 2005 image, block 5 highlighted	64
Figure 21: Validation of Kiwisat DN extraction using Geomatica software	66
Figure 22: Un-attenuated average L _{Pixel,Band} top-of atmosphere unit vector values for each	
fiducial marker for each image	70
Figure 23: Attenuated average LPixel, Band top-of-atmosphere unit vector values for each	•
fiducial marker for each image using Method 1	73
Figure 24: Attenuated average LPixel, Band top-of-atmosphere unit vector values for each	
fiduciary marker for each image using Method 2	75
Figure 25: Three views of a 3D plot of the unit vectors of pixels for the core Maturity Areas for	
Image A, May 2005	79
Figure 26: Representation of the data structure in 3D	
Figure 27: Illustration of a Point to Line Distance in 3D, based on Wolfram MathWorld	
Figure 28: Multi-temporal, multi-image regression for the combined data set of all images with	
error bars showing one standard deviation of measured and predicted dry matter	
Figure 29: Multi-temporal, multi-image regression for the combined data set of all images	
showing the data points designated as <i>Hayward</i> or <i>Hort16A</i>	87
Figure 30: Predicted Dry Matter versus Measured Dry Matter for all reference data points sho	
by individual image; using the solution formula to predict the dry matter	
Figure 31: 3D plot of the solution using selected data points	
Figure 32: Out-of-sample test results for the prediction of dry matter	
Figure 33: Green to Blue ratio as a predictor of dry matter (a) line of best fit formula (b)	
	99
Figure 34: Correlation of various indices against measured dry matter using top-of-atmosphe	
values for Image A	
	102

LIST OF TABLES

Table 1: Market survey results of purchase decisions for kiwifruit	18
Table 2: Historical Taste Zespri Grades (TZG)	21
Table 3: Orchard management practises and the influence they have on the level of dry ma	tter
in kiwifruit (as provided in a handout to growers by Zespri, 2004)	25
Table 4: Average values of male and female kiwifruit leaf attributes, at full leaf expansion (C)lah
and Masarovicova, 1995)	32
Table 5 (a)-(b): Relationships between relative spectral variable (X) and relative grain yield	(Y)
in (a) or relative total biomass (Y) in (b)	42
Table 6: Satellite image technical details	56
Table 7: Satellite image quick reference details	56
Table 8: Multispectral characteristics of QuickBird-2 satellite channels	56
Table 9: Average Full Bloom Date of Test Orchards, 2005 to 2009	60
Table 10: Raw DN values extracted from kiwifruit block 5, Orchard #2 using Kiwisat softwar	e,
May 2005 image	65
Table 11: Fiducial marker details	68
Table 12: Coefficients determined for atmospheric attenuation Method 1	
Table 13: Attenuation coefficients determined from linear regression trend-lines	74
Table 14: Comparison of attenuation methods by evaluating standard deviations	76
Table 15: Summarised data for the core Maturity Areas used for the regression analysis	84
Table 16: Regression output, coordinates and coefficients	85
Table 17: Coordinates for line of best fit and shortest lines from each reference data point	92
Table 18: Shortest lines orthogonality check	92
Table 19: Predicted dry matter using solution coefficients	93
Table 20: Image details of the visualisation subset	94
Table 21: Comparison of predicted dry matter from same orchard and maturity area data ac	
the three images captured through the 2006 season	97
Table 22: Summary of Indices Results	98

ABBREVIATIONS AND DEFINITIONS

Actinidia chinensis Actinidia chinensis is a fruiting vine native to China. The first

commercialised cultivar in New Zealand was Hort16A,

licensed by Zespri International Limited.) Hort16A is also

referred to as Gold in this study.

> predominant cultivar grown in New Zealand for export is Hayward which was commercialised in the 1940's. Hayward

is also referred to as Green in this study.

AgFirst BOP AgFirst Bay of Plenty is an independent company based in

Katikati, New Zealand that provides services to the New

Zealand Kiwifruit Industry. www.agfirstbop.co.nz

Brix is the soluble sugar content (SSC) of a fruit as measured

by a refractometer. A refractometer uses light refraction to measure different sugar concentrations providing a value with

the unit of measure of degrees brix.

DM Dry Matter is what is left of a slice of fruit after it has been

dehydrated, weighed in grams.

DN A Digital Number represents the intensity of the signal

received by the satellite sensor as reflected or emitted by a

given area of the earth's surface.

ISO Week International Organisation for Standardisation leap week

calendar system that is part of the ISO 8601 date and time

standard with the week with the year's first Thursday in it

being ISO Week 1.

MDM Measured Dry Matter

MSE Mean Squared Error, measures the average of the squares of

the "errors", that is, the difference between the estimator and

what is estimated

%DM Percentage Dry Matter, the dry weight of a material, in this

case kiwifruit, expressed as a percentage of the fresh weight.

PDM Predicted Dry Matter

Psa The bacterial kiwifruit vine disease Pseudomonas syringae pv

actinidiae.

R Correlation coefficient

R² Coefficients of determination

RMSE Root Mean Square Error is the square root of MSE or the

standard deviation

SE Standard Error

TE Tray Equivalent, unit of measure of kiwifruit quantity being the

number of pieces of fruit of a certain size that fit into a

standard tray based on weight

TZG Taste Zespri Grade

Yield TE per hectare

Zespri Zespri International Limited.