Amelioration of the Impact of Physical Fatigue on Cognitive Performance by Phytochemicals: The Effect of a Blackcurrant Supplement

A thesis presented in partial fulfilment of the requirements for the degree of

Masters of Science
in Psychology

at Massey University, Manawatu,
New Zealand

U`Nita Harold

2016
Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Abstract

Exercise-induced physical fatigue is thought to impair the cognitive functioning, and therefore mental performance, of the brain. Intervention studies have demonstrated that phytochemical supplementation can facilitate improved cognitive and physical performance. However, little is known about phytochemical supplementations’ ability to ameliorate physical fatigue effects on cognitive performance upon congestion. To investigate this hypothesis, the present study investigated the effects phytochemical compounds, from a blackcurrant supplement, had in regards to reducing physical fatigue effects on cognitive performance while under mental loads. Seventy-two healthy participants completed >10 mins of a high intensity intermittent cycling task (HIIT) (physical fatigue cohort) or >10 mins watching an emotionally neutral documentary (control cohort). Half of the participants in each condition received a blackcurrant supplement one hour before beginning the experimental session. Baseline cognitive tasks and mood questionnaires were completed before ingestion of a blackcurrant extract, again before post-task measurements were completed, and also immediately following the experimental session. Analysis of the subjective self-reports revealed that HIIT was successful at inducing physical fatigue, however, had no effect on subsequent cognitive performance. Further analyses demonstrated that supplementation with a blackcurrant extract had no influence on cognitive performance. The null results for an effect of physical fatigue on cognitive performance made interpretation of this finding difficult. Overall, effect size calculations indicated that a larger sample size would not have resulted in statistically significant findings. It was concluded that the specific high intensity intermittent exercise used in the present study, did not induce a level of fatigue in participants’ that would subsequently impair cognitive performance. Blackcurrant supplement did not demonstrate an ability to enhance cognitive performance following a physically fatiguing task. Possible explanations for these findings are discussed and some potentially useful future studies outlined in the second and third chapters.
Acknowledgements

I would like to express my immense gratitude and appreciation to the New Zealand Institute of Plant and Food Research, specifically Greg Sawyer, Dominic Lomiwes, Suzanne Hurst, who provided immense guidance, commitment and support in developing and conducting the research design. Thank you also for your financial contributions, the loan of the exercise equipment and laboratory equipment, the development of the blackcurrant capsules and your assistance in running the participant trials, without your help this experiment would have carried on for many extra weeks.

I would also like to express my thanks to my research supervisor, Assoc. Prof John Podd, who provided vast knowledge and guidance throughout the entire research project. Thank you also for your assistance and advice with the data analysis and write up phase.

I would like to convey my thanks to Malcolm Loudon for his technical contribution to the research, from his development and creation of the battery of cognitive tasks on the computer.

I would also like to express the enormous gratitude I have for my friends and family for their continuous support and encouragement, especially my fiancé Karl Roberts, whose unwavering love and support encouraged me to the finish line. Equally to my person Fiona Johnston, whose steadfast belief in my me ensured that I crossed this marathon.

Finally, I would like to thank each and everyone of my participants’ who volunteered their time, and for some, enormous energies to participate in the research. Without your contribution this would not have been possible.
Table of Contents

Abstract..2
Acknowledgements...3
Table of
Contents..5
List of
Figures...9
List of
Tables...10

Chapter 1:
Background...11

Chapter 2: Phytochemicals and COGNITIVE PERFORMANCE…17
What are phytochemicals...16
Molecular mechanisms underlying phytochemical influence......................18
Potential public health benefits from phytochemicals.................................20
Phytochemical rich food: benefits to cognitive performance.......................25
Berry fruit phytochemicals and cognitive improvement...............................30
Methodological differences in phytochemical research...............................33
Summary...33

Chapter 3: Exercise and COGNITIVE PERFORMANCE..........35
Theoretical Models of the Interaction in the Exercise-Cognition
Relationship..41
Methodological differences among previous research..................................42
Exercise induced fatigue & subsequent cognitive performance.................44
Physiological explanations of the exercise-cognition relationship..............47
Summary...48
Chapter 4: Methodology

Participants

Group assignment

Apparatus and Measures

Cognitive tasks

Stroop

Digit Symbol Substitution

Digit Span Backwards

Trail Making Task (B)

Choice Reaction Time Task

Subjective Measures

Mental and Physical State and Trait Energy and Fatigue Scales

Ratings of Perceived Exertion

Baeke Questionnaire and Health Screening

Heart Rate Measure

Lactate Measure

Treatments

Exercise induced fatigue manipulation

Control Task

Phytochemical Manipulation

Blackcurrant extract

Design and Analysis

Procedure

Familiarisation
Main Trial...65
First stage...65
Second stage..65
Third stage-Exercise- session...66
Fourth stage...66
Control Session..66
Fifth Stage-Debrief...67

Chapter 4: Results..68
Fatigue Manipulation...68
 Stroop- Overall...69
 Stroop-Congruent..69
 Stroop-Noncongruent...70
 Digit Span Backwards..70
 Digit Symbol Substitution...71
 Trail Making Task (B)...73
 Choice Reaction Time Task...73
Summary...74

Chapter 6: Discussion..75
Inducing Physical Fatigue..77
Hypothesis One: Physical Fatigue Impairs Subsequent Cognitive
 Performance...77
Hypothesis Two: Blackcurrant Supplement Ameliorates the Effects
 of Fatigue on Cognitive Performance..............................90
Limitations..94
Conclusions...97

References..100
Appendices..118
 Appendix A: Advertisement Flyer....................................119
Appendix B: Mental & Physical State and Trait Energy and Fatigue

Appendix C: Health Screening Form

Appendix D: Information Sheet

Appendix E: Baeke Habitual Physical Activity

Appendix F: Ratings of Perceived Exertion

Appendix G: Consent Form

Appendix H: List of Foods to Avoid

Appendix I: ANCOVA Between Subjects Tests Tables
List of Figures

Figure 1: Visual representation of the Yerks & Dodson’s inverted U-hypothesis……………………………………………………………………..39
Figure 2: Visual representation of the Stroop task…………………………51
Figure 3: Visual representation of the Digit Symbol Substitution………52
Figure 4: Visual representation of the Digit Span Backwards…………..53
Figure 5: Visual representation of the Trail Making Test (B)……………54
Figure 5: Visual representation of the Choice Reaction Time Task……55
Figure 6: Interaction between condition and intervention for digit span backwards……………………………………………………………….69
Figure 7: Interaction between condition and intervention for Digit Symbol Substitution…………………………………………………………72
List of Tables

Table 1: Group assignment in accordance to gender and condition
Table 2: Adjusted means, standard errors (in parentheses) and 95% confidence intervals for Stoop (overall)
Table 3: Adjusted means, standard errors (in parentheses) and 95% confidence intervals for Stoop (congruent)
Table 4: Adjusted means, standard errors (in parentheses) and 95% confidence intervals for Stoop (non congruent)
Table 5: Adjusted means, standard errors (in parentheses) and 95% confidence intervals for Digit Span Backwards
Table 6: Adjusted means, standard errors (in parentheses) and 95% confidence intervals for Digit symbol substitution
Table 7: Adjusted means, standard errors (in parentheses) and 95% confidence intervals for Trail Making Task (B)
Table 8: Adjusted means, standard errors (in parentheses) and 95% confidence intervals for Choice Reaction Time Task