Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
Epidemiology and production effects of leptospirosis in New Zealand sheep

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy
In
Veterinary Sciences

at Massey University, Manawatu,
New Zealand

Emilie Vallée
2016
Abstract

Leptospirosis causes clinical disease in sheep and is an important occupational disease in New Zealand. Contact with sheep has been shown to be a significant risk factor for human infection, particularly in meat workers. Up to 97% of New Zealand sheep flocks are seropositive to *Leptospira borgpetersenii* serovar Hardjo (Hardjo) and/or *Leptospira interrogans* serovar Pomona (Pomona), yet vaccination is rare.

The work presented in this thesis investigates the epidemiology and effects on sheep growth and reproduction of Hardjo and Pomona, as well as the effectiveness and the effects on sheep production of a commercial bivalent Hardjo and Pomona vaccine.

A split-herd vaccination trial involved a bivalent Hardjo and Pomona vaccination programme for one third of 2260 ewe lambs on 8 farms starting at one month of age. Repeated blood samples were taken over one (6 farms, mated as hoggets) or two (2 farms, mated as 2-tooths) years for microscopic agglutination testing to assess exposure to Hardjo and Pomona in the unvaccinated group. Weight and pregnancy, docking and weaning data were recorded and compared between vaccinated and unvaccinated, as well as between seropositive and seronegative within the unvaccinated group. Urine samples were collected from a random subsample of both vaccinated and unvaccinated sheep on each farm one to two years after the beginning of the study and the samples were analysed by real-time PCR.

The Hardjo exposure pattern was consistent across seven out of eight farms, with exposure occurring at around 10-15 months. On one farm Hardjo exposure started before weaning. Three farms became positive for Pomona at around 8-15 months. The description of the serological patterns identified a period at risk for sheep exposure to leptospirosis, and also possibly at risk for humans handling sheep.

The overall vaccine effectiveness was 86.3% [63.6-94.8], with the lowest farm level effectiveness 76% [29-92], in spite of a vaccination schedule differing from the manufacturer’s recommendations on some farms. Vaccination timing seemed to be crucial in achieving optimum reduction in shedding in urine of vaccinated sheep. These results can be used to inform vaccination best practice guidelines and recommendations.

Comparison of growth performance between sheep seropositive for Hardjo and/or Pomona and seronegative did not allow for definitive conclusions as the results varied between farms and periods in magnitude and direction of difference. The results showed a significant effect of recent Hardjo infection in hoggets on reducing lamb survival from docking to weaning. No other statistically significant difference in reproductive rates was observed for either serovar. No difference in growth or reproduction was observed
between vaccinated and unvaccinated sheep. Hence, vaccination appears unlikely to be cost-effective on most New Zealand sheep farms where exposure patterns would be similar to those observed in this study. However, more data is needed to understand the variability in the results observed between the different study farms. This conclusion also does not account for the possible cost of human infection. Furthermore, the Pomona exposure was possibly not high enough to identify any production effect associated with this serovar, so more data on the effects of Pomona would be needed for robust conclusions.

This likely absence of production effects contrasts with what has been observed in New Zealand farmed deer, where vaccination was shown to improve growth rates and weaning rates.
Acknowledgements

All praise and thanks to the Lord of all mankind

I would like to start by expressing all my gratitude to Pr Peter Wilson, my main supervisor, for his support, patience, advice, encouragement, and especially for guiding me towards a real scientific approach. I also thank my co-supervisors, Pr Cord Heuer, Dr Julie Collins-Emerson and Dr Jackie Benschop, for your immense support, both academically and personally. I learnt so much, about lepto, about epidemiology, and about myself, thanks to you all!

Very special thanks go to the farmers, farm workers, spouses... who, for 3 years, contributed to the data used for this work: James, Forbes, Duncan, Angus, Arthur, Kit, Mark, Scott, Simon, Nikki, Robbie, John, Charles, Tony, Lynda, Alf and many more... This was a huge work that could not have been conducted without passionate and generous people like them. This appreciation extends to their veterinarians, particularly Noel McGirr and Ian Page, North Canterbury veterinary clinics, for their help in finding candidate farms and collecting the data.

I am also immensely grateful to Neville Haack, for all these hours, days, nights, weeks, weekends, on the farm or in the lab, collecting or analysing samples. We collected around 17,000 blood samples, analysed twice each... This was huge, huge work, and my gratitude is in proportion.

Several people also deserve to be acknowledged here, for their input, advice or teaching: Dr Anne Ridler, for bringing her knowledge on sheep and beef cattle farming, Pr Mark Stevenson, Dr Naomi Cogger, Dr Chris Jewell and Pr Ian Dohoo for all the epidemiological knowledge I gained and sometimes applied during these years, the people and staff in the “EpiLab and the EpiCentre, John Moffat from MSD Animal Health for his trust and useful feedbacks, and A Pr Geoff Jones for the last minute emailed questions always quickly and nicely answered.

This work was funded by the Sustainable Farming Fund of the NZ Ministry of Primary Industry, Rural Women, Beef+Lamb NZ, Federated Farmers, Alma Baker, Agmardt, the New Zealand Veterinary Association, MSD Animal Health, Virbac, Zoetis, and Massey University Graduate Research School.

Friends make you laugh a little louder, smile a little brighter and live a little better, and I was blessed to be surrounded by such wonderful persons, in IVABS and EpiCentre: Masako, Dani, Kandarp, Felipe, Jose, Sara, Doris, Rebecca, Kat, Asmad, Ali, Alfredo, Tessy, Shirli, Fang (thanks for all the time spent teaching me lab technics
too), Juan, Nelly, Arata, Aaron, Alicia, Chris, Milan, Lesley, Anou, Cristobal, Kruno, Melvin, Rima, Ray, Ben and many more. Some came to the farm with me, along with too many others to list them here, including visiting students from France and Netherlands, and I’m really grateful for this precious help.

Palmy became my home, and some people contributed to it: my sisters and brothers from the Massey Muslim Society and the Manawatu Muslim Association, especially (but not only) Rana & Hazim, Norzam and Nazmeen & Intiyaz. Thanks to you all I always had a family to rely on here. Jazakum Allah kheir.

Last but not least, I would like to thank my parents, for always having faith in me and supporting all my choices, and my husband Ahmed for, simply, everything. For being here, especially at my worst, for believing in me more than I do, for showing me how to get the best out of myself, for your prayers and your love, and for everything I cannot list here.

“I asked Allah for strength and Allah gave me difficulties to make me strong. I asked Allah for wisdom and Allah gave me problems to solve. I asked Allah for courage and Allah gave me obstacles to overcome. I asked Allah for love and Allah gave me troubled people to help. I asked Allah for favors and Allah gave me opportunities. Maybe I received nothing I wanted, but I received everything I needed – Alhamdulillah.” – Anonymous
List of Publications

Vallée E. Does leptospirosis reduce animal production in New Zealand? *Vetscript* 26(11), 17, 2013

List of Presentation and Posters

Oral presentations (* speaker)

Posters

Table of Contents

Abstract..iii
Acknowledgements... v
List of Publications.. vii
List of Presentation and Posters ...viii
Table of Contents .. x
List of Figures..xvi
List of Tables .. xviii
Appendices ...xxi

Chapter 1. Introduction... 1

1.1. Etiologic agent: *Leptospira* species ... 1

1.1.1. Characteristics .. 1

1.1.2. Classification ... 1

1.2. Epidemiology and ecology ... 2

1.3. *Leptospira* and leptospirosis in pastoral livestock ... 4

1.3.1. Situation in New Zealand .. 4

1.3.2. Risk factors for seropositivity .. 7

1.3.2.1. Contact with other species .. 7

1.3.2.2. Environmental factors .. 8

1.3.2.3. Management factors ... 8

1.3.3. Clinical signs and lesions ... 9

1.3.4. Subclinical effects ... 10

1.3.5. Pathogenesis ... 10

1.3.6. Immunity ... 10

1.3.7. Diagnosis ... 11

1.3.7.1. Detection of *Leptospira* .. 11

1.3.7.2. Serological diagnosis ... 12

1.3.7.3. Molecular diagnosis ... 13

1.3.8. Treatment ... 14

1.3.9. Prevention and vaccination .. 15

1.4. Leptospirosis as a zoonosis ... 16

1.5. Aims of this thesis ... 17

1.6. References .. 18
Chapter 2. A review of the effects of *Leptospira* spp. infection on farmed ruminants production ... 29
 2.1. Introduction ... 30
 2.2. Reproduction ... 31
 2.2.1. Conception and establishment of pregnancy 31
 2.2.1.1. Dairy cattle .. 31
 2.2.1.2. Beef cattle .. 32
 2.2.1.3. Small ruminants and deer .. 33
 2.2.1.4. Pathogenesis of early reproductive effects 33
 2.2.2. Fetal leptospirosis and its effects: abortion and stillbirth 34
 2.2.2.1. Fetal leptospirosis in cattle .. 34
 2.2.2.2. Fetal leptospirosis in small ruminants and other species 38
 2.2.2.3. Relative importance of *Leptospira* as a cause of abortion ... 39
 2.2.3. Clinical disease and mortality between birth and weaning 40
 2.3. Clinical disease and mortality in adults 41
 2.4. Milk production ... 42
 2.5. Growth and live weight .. 43
 2.5.1. Weight at birth .. 43
 2.5.2. Growth of young and weight of adults 43
 2.6. Effectiveness of vaccination in preventing or reducing production losses ... 46
 2.6.1. Vaccination to prevent production losses 46
 2.6.2. Vaccination in response to production losses 51
 2.7. Conclusion .. 52
 2.8. References .. 53

Chapter 3. Serological patterns, antibody half-life and shedding in urine of *Leptospira* spp. in naturally exposed sheep .. 61
 3.1. Abstract .. 62
 3.1.1. Aims ... 62
 3.1.2. Methods .. 62
 3.1.3. Results .. 62
 3.1.4. Conclusions ... 62
 3.2. Key words .. 63
 3.3. Abbreviations .. 63
3.4. Introduction ... 63
 3.4.1. Study design ... 64
3.5. Material and methods ... 64
 3.5.1. Farms and animals ... 65
 3.5.2. Blood and urine collection ... 66
 3.5.3. Microscopic agglutination test ... 68
 3.5.4. Real-time PCR ... 68
 3.5.5. Statistical analysis ... 69
 3.5.5.1. Log titre and geometric mean titre .. 69
 3.5.5.2. Seroprevalence .. 69
 3.5.5.3. Titre pattern with age ... 69
 3.5.5.4. Titre decay and antibody half-life .. 70
 3.5.5.5. Leptospiral shedding in urine ... 71
 3.5.5.6. Animals lost to follow-up .. 71
 3.5.5.7. Statistical packages ... 71
 3.5.6. Animal Ethics .. 71
3.6. Results ... 71
 3.6.1. Descriptive analysis: seroprevalence and GMT ... 71
 3.6.2. Titre pattern with age .. 75
 3.6.3. Titre decay and antibody half-life ... 80
 3.6.4. Shedding in urine ... 81
 1.1.1. Animals lost to follow-up .. 82
3.7. Discussion ... 84
3.8. Acknowledgements .. 92
3.9. References ... 93

Chapter 4. Effectiveness of a commercial leptospiral vaccine on urinary shedding in naturally exposed sheep in New Zealand ... 97
4.1. Abstract .. 98
4.2. Keywords ... 98
4.3. Abbreviations ... 98
4.4. Introduction ... 99
4.5. Materials and methods .. 100
 4.5.1. Animals ... 100
 4.5.2. Vaccine and vaccination protocol ... 100
Chapter 6. Effects of natural infection by *L. borgpetersenii* serovar Hardjo type Hardjo-bovis, *L. interrogans* serovar Pomona and leptospiral vaccination on sheep reproduction ... 139

6.1. Abstract .. 140

6.2. Keywords .. 141

6.3. Introduction ... 141

6.4. Material and methods .. 142

6.4.1. Study design, farms and animals .. 142

6.4.2. Reproduction data collection and outcome definitions 143

6.4.3. Microscopic agglutination test ... 146

6.4.4. Statistical analysis .. 146

6.4.4.1. Inference of missing breeding weights ... 146

6.4.4.2. Effects on reproduction ... 147

6.4.4.3. Effects of vaccination on cumulated loss to follow-up 147

6.5. Results ... 148

6.5.1. Reproductive rates .. 148

6.5.2. Relationship between vaccination and reproduction 148

6.5.3. Relationship between Hardjo serology and reproduction 149

6.5.4. Relationship between Pomona serology and reproduction 151

6.5.5. Relationship between dual Hardjo-Pomona serology and reproduction .. 151

6.5.6. Relationship between vaccination and loss to follow-up 155

6.6. Discussion .. 156

6.7. Conclusion .. 158

6.8. Conflict of interest ... 158

6.9. Acknowledgements .. 158

6.10. References .. 159

Chapter 7. General discussion .. 163

7.1. Introduction .. 163

7.1.1. Aims of this chapter ... 163

7.1.2. Aims of the thesis ... 163

7.2. Critical analysis and interpretation of findings, relevance and comparison with current knowledge ... 164
7.2.1. Summary of findings ... 164
7.2.2. The notion of reservoir species status: is the sheep a reservoir for Hardjo in New Zealand? ... 165
7.2.3. Between-farm variability of the Pomona status in New Zealand 166
7.2.4. Maternal antibodies in sheep ... 167
7.2.5. Cost effectiveness of vaccination in sheep 168

7.3. Chosen methodology and effect on conclusions 169
 7.3.1. Selection bias and marginal effects .. 169
 7.3.2. Split-herd trial: comparison of design with a similar work in deer.... 171
 7.3.3. Reduction of type I and type II errors ... 173
 7.3.3.1. Multiple comparison adjustments to reduce type I error 173
 7.3.3.2. Multiple imputation to reduce type II error in observational studies ... 173

7.4. Conclusions and suggestions for future work 174
7.5. References ... 175

Appendix ... 179

Appendix 1: Link to online repository containing the raw data used for this thesis ... 180
Appendix 2: Published article: Serological patterns, antibody half-life and shedding in urine of Leptospira spp. in naturally exposed sheep 181
Appendix 3: Published article: Factors associated with fetal losses in ewe lambs on a New Zealand sheep farm ... 195
List of Figures

Chapter 3
Figure 3-1: Location of the eight study farms A to H .. 655
Figure 3-2: Predicted mean log titre for Leptospira borgpetersenii serovar Hardjo as a function of sheep age on eight different farms (A–H), with Loess smoothing and bootstrap 95% CI around predicted values ... 766
Figure 3-3: Predicted mean log titre for Leptospira borgpetersenii serovar Hardjo including all farms as a function of sheep age, with Loess smoothing and bootstrap 95% CI around predicted values .. 777
Figure 3-4: Predicted mean log titre for Leptospira interrogans serovar Pomona as a function of sheep age on eight different farms (A–H), with Loess smoothing and bootstrap 95% CI around predicted values ... 788
Figure 3-5: Predicted mean log titre for Leptospira interrogans serovar Pomona including all farms as a function of sheep age, with Loess smoothing and bootstrap 95% CI around predicted values .. 799
Figure 3-6: Predicted linear regressions of log titre for Leptospira borgpetersenii serovar Hardjo (plain line with peak at 3,072 and dot-dash line with peak at 768) and L. interrogans serovar Pomona (dashed line with peak at 3,072 and dotted line with peak at 768), as a function of time in months after a peak in naturally infected sheep. The blue dots are the observed Hardjo titres and the red dots the observed Pomona titres. 80

Chapter 5
Figure 5-1: Predicted weights (kg) of ewes (Farms A-H), adjusted for farm and enrolment weight (lamb docking on all farms but H, lamb weaning on farm H), according to weighing episode (2: lamb weaning, 3: hogget breeding, 4: hogget scanning, 5: hogget docking, 6: hogget weaning, 7: 2-tooth breeding, 8: 2-tooth scanning), and stratified by status (green vaccinated, orange non-vaccinated with Hardjo titre only ≥48, purple non-vaccinated with Pomona titre only ≥48, red non-vaccinated with both Hardjo and Pomona titres ≥48, blue non-vaccinated with Hardjo and Pomona titres <48).......................... 1277

Chapter 6
Figure 6-1: Odds ratios (with 95% confidence intervals) of the effect of vaccination on the presence of a live lamb at different reproduction events (scan: at pregnancy scanning, dock: from scanning to tail-docking, wean: from tail-docking to weaning) for both age groups (▭: hoggets, ▼: 2-tooth). Odds ratios are adjusted for breeding weight .. 1488
Figure 6-2: Log-transformed odds-ratios adjusted for breeding weight of the effect of Hardjo serostatus of control ewes compared with seronegative ewes using different cut-offs (▭: 48, ▼: 96, ○: 192, ●: 384, △: 768, ▲: 1536) on having a live lamb for each reproduction outcome (scan: from breeding to scanning, dock: from scanning to tail-
docking, wean: from tail-docking to weaning) for both age groups (Hog: hoggets, 2T: 2-tooth), with 95% confidence intervals. .. 1522

Figure 6-3: Log-transformed odds-ratios adjusted for breeding weight of the effect of Pomona serostatus of control ewes compared with seronegative ewes using different cut-offs (□: 48, ■: 96, ○: 192, ●: 384, △: 768, ▲: 1536) on having a live lamb for each reproduction outcome (scan: from breeding to scanning, dock: from scanning to tail-docking, wean: from tail-docking to weaning) for both age groups (Hog: hoggets, 2T: 2-tooth), with 95% confidence intervals .. 1533

Figure 6-4: Log-transformed odds-ratios adjusted for breeding weight for the effect of dual seropositivity Hardjo-Pomona of control ewes compared to seronegative ewes using different cut-offs (□: 48, ■: 96, ○: 192, ●: 384, △: 768) on having a live lamb for each reproduction outcome (scan: from breeding to scanning, dock: from scanning to tail-docking, wean: from tail-docking to weaning) on study farms, for both age groups (Hog: hoggets, 2T: 2-tooth), with 95% confidence intervals. 1544

Figure 6-5: Odds-ratio adjusted for breeding weight of the effect of vaccination on loss to follow-up from hoggets breeding to hoggets weaning and to 2-tooth scanning on the different study farms (□: A, ■: B, ○: C, ●: D, △: E, ▲: G, +: H) with 95% confidence intervals .. 1555
List of Tables

Chapter 1
Table 1-1: Serovars and serogroups isolated from animals in New Zealand and traditionally recognized reservoir species (Hathaway and Marshall 1980; Levett 2001; Marshall and Manktelow 2002)..2
Table 1-2: Summary of published cross-sectional studies of leptospirosis seroprevalence in New Zealand livestock since 2007, including origin and age of the animals, serovars tested, MAT cut-off used, number of animals tested, observed animal-level seroprevalence, number of farms tested and farm-level seroprevalence.5
Table 1-3: Major clinical signs and associated serovar in cattle, sheep and deer ...9

Chapter 2
Table 2-1: Summary of cattle studies with a comparative, observational, prospective design done on-farm providing quantification of the production effect of exposure to Leptospira showing type, sample size, serovars tested and seroprevalence, timing of measurement of exposure, method and time of measurement of the production effect and observed effect of exposure on production ..45
Table 2-2: Summary of published studies of on-farm natural challenge vaccination trials in cattle and deer, with part of the herd vaccinated and with quantification of the effects of vaccination on production showing species and type, sample size, serovar(s) used in the vaccine, vaccination protocol, evidence of challenge in the control group, method and time of measurement of the production outcome, and observed effects, with p-value for the effect of vaccination on the production outcomes.................................48

Chapter 3
Table 3-1: Description of the eight study farms ...677
Table 3-2: Date of blood sampling, approximate age, number of sheep sampled on eight farms and total number and proportion seropositive (microscopic agglutination test titre ≥48) for Leptospira borgpetersenii serovar Hardjo only, for Leptospira interrogans serovar Pomona only and both Hardjo and Pomona, geometric mean titre (GMT) for Hardjo and Pomona and p value of a t-test comparing Hardjo and Pomona GMT ..733
Table 3-3: Linear regression coefficients and estimated half-life of MAT-titres for Hardjo and Pomona..81
Table 3-4: Number of sheep urine real-time PCR positive and seropositive for Hardjo and Pomona..83
Table 3-5: Coefficients of the mixed logistic regression with real-time PCR status of exposed sheep as the outcome, farm as a random effect and using 1:48 as a cut-off for seropositivity ..84
Table 3-6: Significant or marginally non-significant (p<0.1) difference in Hardjo seroprevalence (titre ≥48) and GMT and Pomona GMT between animals subsequently
retained in the study (retained) and lost to follow-up (lost), and associated p-value for Fisher’s exact test or t-test ...84

Chapter 4
Table 4-1: Farm location, breed, median age and Hardjo and Pomona seroprevalence (MAT titre ≥48) of sheep at the first vaccination (“Leptavoid-2”, MSD Animal Health), and vaccination schedule...102

Table 4-2: Farm exposure, vaccination and sampling sequence, Hardjo and Pomona seroprevalence (titre ≥48) in the control group, number of sheep sampled, number of urine PCR positive for each treatment group, number MAT positive (titre ≥48) for Hardjo and Pomona in the vaccinated sampled animals at time of vaccination, number MAT positive (titre ≥48) for Hardjo and Pomona in the control sampled animals at time of urine sampling and vaccine efficacy (VE) stratified by farm107

Chapter 5
Table 5-1: Farm location, number and breed of ewes, date of weighing episodes, number of vaccinated and control sheep, Hardjo and Pomona seroprevalence (titre ≥48) and geometric mean titre (GMT, for animals with a titre ≥24) in unvaccinated controls at each sampling..122

Table 5-2: Predicted mean weight difference (kg) between non-vaccinated and vaccinated sheep (Vacc), and in the non-vaccinated group, between seropositive (H: Hardjo only, P: Pomona only, HP: Hardjo and Pomona) and seronegative sheep for different titre cut-points, with number of sheep seropositive at this cut-point (in brackets), by farm and by weighing episode (LW: lamb weaning, HB: hogget breeding, HS: hogget scanning, HD: hogget docking, HW: hogget weaning, TB: 2-tooth breeding, TS: 2-tooth scanning); significance level: *<0.1, **<0.05, ***<0.01, ****<0.001. A negative weight difference indicates a higher mean weight in vaccinated than in control sheep, or a higher mean weight in seronegative than seropositive sheep.129

Chapter 6
Table 6-1: Dates of vaccination and management events and number of animals positive (≥48) for Hardjo (H) only, Pomona (P) only and both H/P in controls by farm; lambing occurred as hoggets on farms A, C, D, F, G and H and as 2-tooth on farms B and E..144

Table 6-2: Reproduction outcomes (number with positive outcome/number tested) for vaccinated sheep, and control sheep stratified by Hardjo (H) and Pomona (P) serostatus at the time of measurement of the outcome within each farm. Note: The number by serostatus does not always sum to total control due to some missing sheep, or sample mis-labelling. Lambing occurred as hoggets on farms A, C, D, F, G and H and as 2-tooth on farms B and E. ..150
Chapter 7
Table 7-1 Differences in design between Subharat (2010) in red deer and the current work in sheep .. 171
Appendices

Chapters 3 to 6
Appendix 1: Link to online repository containing the raw data used for this thesis. ...180

Chapter 3
Appendix 2: Published article: Serological patterns, antibody half-life and shedding in urine of *Leptospira* spp. in naturally exposed sheep.................................181

Chapter 6
Appendix 3: Published article: Factors associated with fetal losses in ewe lambs on a New Zealand sheep farm...195