Testing the relationship between gut permeability, elevation of systemic lipopolysaccharides and chronic disease

A thesis presented in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

at Massey University, Manawatu, New Zealand

Anne Gnauck

2016
Abstract

The aim of my thesis was to test whether an increase in the permeability of the gut is accompanied by an increase in the level of systemic lipopolysaccharides (LPS), also referred to as endotoxin. These two parameters were firstly concurrently determined in healthy women after the treatment with a single dose of aspirin which is thought to temporarily increase the paracellular permeability of the intestine. Gut permeability and the levels of systemic LPS in healthy women were then compared with those in women with Crohn’s disease (CD) as the latter are thought to have chronically elevated paracellular permeability of the gut. Both groups also ingested a high fat drink which is reported to results in the elevation of systemic LPS. In addition, faecal calprotectin, a biomarker of ongoing inflammation in the gut, and LPS-binding protein (LBP), a proposed indirect biomarker for the exposure to LPS in the systemic circulation, were determined both in healthy women and in those with CD.

Data indicated that both temporary and chronic increase in the paracellular permeability of the small intestine can be reliably determined by the 3-h excretion of lactulose. Further the combination of levels of faecal calprotectin and 3-h excretion of lactulose and mannitol is the most sensitive tool to distinguish between healthy subjects and those with CD. Hence, it is evident that the combination of those three parameters can be used to assess gut health. In contrast, the current available methods for the direct assessment of the systemic level of LPS/endotoxin i.e. the Limulus Amebocyte Lysate (LAL) assay for the quantification of endotoxin or ELISAs for the quantification of LPS, are not reliable as the former is interfered by constituents of serum and the latter failed to detect LPS from sources other than those provided from the manufacturer of the kit. Hence, studies suggesting that the consumption of high fat meals lead to elevations of systemic endotoxin and those suggesting that levels of
systemic endotoxin is associated with the onset of metabolic syndrome are questionable. It is therefore advisable to repeat those studies when accurate methods for the quantification of LPS/endotoxin in the systemic circulation are available.
Acknowledgment

I wish to thank the following individuals and organizations for making this study a success:

- To my parents and grandparents for their support while I was doing this PhD program in New Zealand;
- To my supervisors Prof Roger G. Lentle and Prof Marlena C. Kruger who funded my PhD project and continually provided me guidance and support;
- To Dr Gordon Reynolds for his financial support of the Crohn’s disease study;
- To the German Academic Exchange Service (DAAD) and the Massey University who provided me doctoral scholarships;
- To Prof Jeroen Douwes and Dr Collin Brooks (both Centre for Public Health research, Massey University, Wellington) for their technical advice in performing the kinetic LAL test and the usage of their micro-plate reader;
- To Prof Bernd Rehm (Institute of Fundamental Science, Massey University, Manawatu) for the use of the micro-plate reader in his laboratory;
- To Prof Matt Golding for his advice during the development of a pleasant Intralipid drink;
- To my colleagues Chris Booth and Anne Broomfield for their help during the human trial of the study, Chris Booth for her technical expertise in Bod Pod, Michelle McGrath and Maggie Zou for their technical expertise in HPLC, and Ying Jin for taking blood sample for my pilot study;
- To my friends in Palmerston North and back home who supported me throughout my stay in New Zealand.
Table of Contents

Chapter 1 Introduction ... 1

1.1 General overview of the topic .. 2

1.2 Aim and objectives of the thesis .. 3

1.2.1 Primary objectives ... 4

1.2.2 Secondary objectives ... 4

1.3 Structure of the thesis ... 5

1.4 References ... 7

Chapter 2 Literature Review .. 9

2.1 Introduction ... 12

2.2 The structure of the outer membrane of Gram-negative bacteria .. 13

2.2.1 Characterisation of lipopolysaccharide (LPS) ... 14

2.3 The Function of the lipopolysaccharide in Gram-negative bacteria ... 18

2.3.1 The barrier function ... 18

2.3.2 The protection of the organism ... 19

2.4 The endotoxic potential of LPS in humans .. 20

2.4.1 The recognition of LPS by the TLR4/MD-2 complex .. 20

2.4.2 The structure of lipid A determines the endotoxicity of the LPS molecule .. 25

2.4.3 The effect of the total dose of LPS on TLR4-signalling pathways ... 28

2.4.4 The immune response to intact Gram-negative bacteria .. 29

2.5 Variations in the response to LPS according to cell type .. 31

2.5.1 Reactions of mucosal cells to luminal LPS ... 31
2.5.2 Interactions between circulating LPS and the hosts immune system38
2.5.3 The limitations of in-vitro models...53
2.6 Consequences of the LPS-induced immune response ..55
 2.6.1 Is the acute pro-inflammatory immune response to systemic endotoxic LPS from luminal commensals used as gatekeeper?55
 2.6.2 Do chronically low levels of LPS represent a long term health risk?57
2.7 The permeability of the gut to luminal LPS ..61
 2.7.1 The paracellular permeability of the gut to luminal LPS61
 2.7.2 Transcellular mechanisms involved in the translocation of luminal LPS during the process of fat absorption...66
 2.7.3 The paracellular permeability of the gut to luminal LPS in subjects with Crohn’s disease ..68
2.8 References...69

Chapter 3 Overview of Methods ..77
3.1 Methods of choice ..78
 3.1.1 Methods for the quantification of systemic LPS/endotoxin78
 3.1.2 Methods for the assessment of gut permeability80
3.2 Quantification of endotoxin in serum using the Limulus Amebocyte Lysate assay...83
 3.2.1 History and general principle of the LAL assay83
 3.2.2 The principle of the chromogenic LAL assay ..85
 3.2.3 The Endosafe® PTS manufactured by Charles River Laboratories86
 3.2.4 The kinetic-QCL™ LAL kit manufactured by Lonza89
3.3 Quantification of LPS in serum using ELISA assays .. 91

3.3.1 The principle of ELISA assays ... 91

3.3.2 The protocol of the LPS – ELISA kit manufactured by Sun Red 92

3.3.3 The protocol of the LPS – ELISA kit manufactured by Cusabio 93

3.4 Quantification of LBP in serum using ELISA assay 95

3.4.1 The procedure of the LBP – ELISA manufactured by Hycult 95

3.5 Assessment of gut permeability using the standardised lactulose- mannitol test. ... 97

3.5.1 The principle of the lactulose-mannitol test ... 97

3.5.2 The protocol for the lactulose- mannitol test .. 97

3.5.3 Quantification of lactulose and mannitol in urine samples using HPLC 99

3.6 References .. 101

Chapter 4 Method Evaluation – Pilot Study .. 105

4.1 Introduction .. 108

4.2 Materials and methods .. 109

4.2.1 Subjects and sampling of blood samples .. 109

4.2.2 Determination of endotoxin levels in serum samples using the Endosafe®
PTS kit manufactured by Charles River Laboratories 109

4.2.3 Determination of circulating levels of LPS using the LPS-ELISA
manufactured by Sun Red .. 111

4.2.4 Determination of circulating levels of LPS using the LPS-ELISA from
Cusabio ... 112

4.3 Results .. 115
4.3.1 Endosafe® PTS method...115
4.3.2 LPS-ELISA manufactured by Sun Red.................................116
4.3.3 LPS-ELISA manufactured by Cusabio.................................116
4.4 Discussion..119
4.5 References..122

Chapter 5 Pilot Study...123
5.1 Introduction..126
5.2 Subjects and Methods...129
 5.2.1 Subjects...129
 5.2.2 Study protocol and design...130
 5.2.3 Determination of urinary lactulose and mannitol...........131
 5.2.4 Quantification of levels of LPS in human blood............131
 5.2.5 Statistical analysis...132
5.3 Results...134
 5.3.1 Body composition of subjects......................................134
 5.3.2 Variations in serum baseline LPS levels in healthy human subjects.....134
 5.3.3 The effect of aspirin on serum LPS levels136
 5.3.4 The effect of aspirin on the excretion of lactulose and mannitol..........137
 5.3.5 Correlation between lactulose excretion and serum LPS concentration.....
 ..138
5.4 Discussion...140
5.5 References..143
5.6 Unpublished work with the LAL assay manufactured by Charles River......145

5.6.1 Quantification of levels of systemic endotoxin using the Endosafe® PTS kit..145

5.6.2 Results ..147

5.6.3 Conclusion ..148

Chapter 6 Method Evaluation – Intralipid Study..151

6.1 Abstract ..153

6.2 Introduction ..154

6.3 Methods ..155

6.3.1 Subject and sampling of blood samples...155

6.3.2 Adaptation of the kinetic-QCL™ LAL assay for the quantification of endotoxin levels in human serum..156

6.3.3 The evaluation of an ELISA assay for the quantification of LBP in serum ..162

6.3.4 Statistical analysis...163

6.4 Results ...164

6.4.1 Adaption of the kinetic-QCL™ LAL assay manufactured by Lonza.....164

6.4.2 Evaluation of the LBP - ELISA from Cusabio172

6.5 Discussion ..173

6.6 Conclusion ..176

6.7 Reference ...177

Chapter 7 Intralipid Study ..179

7.1 Introduction ..181
7.2 Materials and methods ... 183

7.2.1 Subjects ... 183

7.2.2 Study protocol and design.. 184

7.2.3 Determination of urinary lactulose and mannitol............................ 185

7.2.4 Determination of levels of LPS in serum .. 186

7.2.5 Determination of levels of LBP in serum ... 187

7.2.6 Determination of lipid profile .. 187

7.2.7 Statistical analysis ... 188

7.3 Results ... 189

7.3.1 Body composition of subjects ... 189

7.3.2 Serum LPS and LBP levels in healthy women and those with Crohn's disease ... 189

7.3.3 The effect of Intralipid on serum LPS and LBP levels 190

7.3.4 The effect of Intralipid on lipid profile ... 192

7.3.5 Variation in the excretion of lactulose and mannitol between healthy women and those with a history of Crohn's disease 195

7.3.6 Correlations between gut permeability and serum LPS and LBP levels..... 196

7.4 Discussion ... 198

7.5 References ... 202

7.6 Work not identified for publication .. 204

7.6.1 Determination of levels of endotoxin in serum samples 204

7.6.2 Results .. 206
Chapter 8 Note - Intralipid study ... 209

8.1 Introduction .. 211

8.2 Materials and methods .. 212

8.2.1 Materials ... 212

8.2.2 Experimental design ... 212

8.2.3 Quantification of endotoxin in the aqueous phase ... 213

8.3 Results and Discussion .. 215

8.3.1 The effects of the period of incubation with Intralipid® on the recoveries of endotoxin from the aqueous phase ... 215

8.3.2 The effect of the dose of endotoxin on its recovery from the aqueous phase .. 215

8.4 References ... 217

Chapter 9 Technical Note: LPS - ELISA ... 219

9.1 Introduction ... 221

9.2 Methods .. 222

9.2.1 Bacterial LPS and endotoxin ... 222

9.2.2 LPS-binding protein .. 223

9.2.3 Faecal water ... 223

9.2.4 Serum samples .. 224

9.2.5 Quantification of LPS/LBP by LPS - ELISA ... 224

9.2.6 Quantification of endotoxin by Limulus Amebocyte Lysate Assay 225
Chapter 9

9.2.7 LBP - ELISA ...225

9.2.8 Statistical analysis ...226

9.3 Results ...227

9.3.1 Detection of LPS and endotoxin by LPS - ELISA227

9.3.2 Detection of LPS by LAL assay ..228

9.3.3 Quantification of LBP standards by LPS - ELISA229

9.3.4 Quantification of LBP spiked into serum samples by LPS - ELISA...229

9.3.5 Correlation between ambient LPS and ambient LBP level in serum samples ...230

9.4 Discussion ..231

9.5 Conclusion ...231

9.6 References ...232

Chapter 10 Method Evaluation – Crohn’s disease study233

10.1 Introduction ..234

10.2 Methods ...236

10.2.1 Subjects and sampling of blood samples236

10.2.2 Modification of the method for the pre-treatment of serum samples prior to LAL assay ...236

10.2.3 Evaluation of the modified method for the pre-treatment of serum samples prior to LAL assay ...240

10.2.4 The evaluation of the human LBP – ELISA manufactured by Hycult for the quantification of LBP in serum ...241

10.3 Results ...244
10.3.1 Evaluation of other methods for the pre-treatment of serum samples prior to LAL assay..244
10.3.2 Comparison of delta time observed from a series of endotoxin standards and from pre-treated serum samples that were spiked with endotoxin 249
10.3.3 The evaluation of the LBP – ELISA manufactured by Hycult250

10.4 Discussion ...252
10.5 Conclusion..253
10.6 Reference ...254

Chapter 11 Crohn’s disease study...255

11.1 Introduction ...257

11.2 Materials and methods...259
11.2.1 Subjects..259
11.2.2 Study protocol and design ...260
11.2.3 Determination of endotoxin ..261
11.2.4 Determination of LBP ..263
11.2.5 Determination of inflammatory markers in samples of blood and faeces264
11.2.6 Determination of urinary excretion rates lactulose and mannitol264
11.2.7 Statistical analysis ..265

11.3 Results..267
11.3.1 Body composition ...267
11.3.2 Serum endotoxin levels and recovery of endotoxin spiked into raw serum ..267
Appendix I Documents – Evaluation of Methods ...325

Appendix I - i MUHEC: Southern A - Approval Application 12/61325

Appendix I - ii Information Sheet ..328

Version 1 ..328

Version 2 ..331

Appendix I - iii Participant Consent Form ...333

Version 1 ..333

Version 2 ..334

Appendix I - iv Confidentiality Agreement ...335

Appendix II Documents – Pilot Study ..337

Appendix II - i MUHEC: Southern A – Approval Application 13/31337

Appendix II - ii Information Sheet ..338

Appendix II - iii Health Screening Questionnaire ..342

Appendix II - iv Participant Consent Form ...346

Appendix II - v Confidentiality Agreement ...347

Appendix III Documents – Intralipid Study ...349

Appendix III - i MUHEC: Southern A – Approval Application 14/11349

Appendix III - ii Information Sheet – Control group ..351

Appendix III - iii Information Sheet – Crohn’s disease group355

Appendix III - iv Health Screening Questionnaire – Control group359

Appendix III - v Health Screening Questionnaire – Crohn’s disease group363

Appendix III - vi Food Record Protocol ..368
Appendix III - vii	Participant Consent Form	370
Appendix III - viii	Confidentiality Agreement	371
Appendix IV	Documents – Crohn’s disease Study	373
Appendix IV - i	MUHEC: Southern A – Approval Application 15/18	373
Appendix IV - ii	Information Sheet – Control group	376
Version 1	For participants from the Palmerston North area	376
Version 2	For participants from the Wellington area	380
Appendix IV - iii	Information Sheet – Crohn’s disease group	384
Version 1	For participants from the Palmerston North area	384
Version 2	For participants from the Wellington area	388
Appendix IV - iv	Health Screening Questionnaire - Control group	392
Appendix IV - v	Health Screening Questionnaire – Crohn’s disease group	396
Appendix IV - vi	Assessment of Disease Activity by Harvey - Bradshaw Index	401
Appendix IV - vii	Participant Consent Form	402
Appendix IV - viii	Confidentiality Agreement	403
Appendix V	Review Paper – Lipopolysaccharides	405
Appendix VI	Original Research Paper – Pilot Study	437
Appendix VII	Original Research Paper – Method Development LAL assay	447
Appendix VIII	Review Paper – Endotoxin Measurement	459
Appendix IX	Copyright - Permission	479
Appendix IX - i	Published papers	479
Appendix IX - ii	Figures used in the thesis	483
List of Figures

Figure 1-1. Schematic overview of the proposed absorption routes of LPS from the gut lumen into the systemic circulation...3

Figure 2-1. Model of the inner and outer membrane of Gram-negative bacterium E. coli K-12. ...13

Figure 2-2. Schematic overview of the structural components of lipopolysaccharides (LPS) and lipooligosaccharides (LOS)...14

Figure 2-3. Structure and biosynthesis of Kdo2-lipid A in E. coli K-12...................16

Figure 2-4. Schematic steps involved in the recognition of circulating LPS.............21

Figure 2-5. TLR4-mediated signalling pathway..24

Figure 2-6. The relationship between the amount of secondary acyl chains, the resistance against host antibacterial peptides and the TLR4 recognition as well as the habitat of Gram-negative bacteria...26

Figure 2-7. Schematic overview of connections between adjacent cells..................62

Figure 2-8. Schematic overview of the proposed absorption routes of LPS from the gut lumen into the systemic circulation...67

Figure 3-1. Clotting cascade generated in amebocytes of the horseshoe crab showing pint of activation by endotoxin and β-glucan..84

Figure 3-2. Schematic composition of the pre-formulated, disposable, single-test cartridges for use in the Endosafe® PTS reader...87

Figure 3-3. The Endosafe® PTS kit...87

Figure 3-4. Principle of the ELISA assay..92

Figure 3-5. HPLC profile of duphalac (A) and Laevolac (B).................................98

Figure 4-1. LPS standard curves obtained with the ELISA kit manufactured by Sun Red. ...112
Figure 4-2. LPS standard curve obtained with LPS-ELISA manufactured by Cusabio. ..113

Figure 4-3. Dilution series of serum samples with MilliQ water as sample diluent using LPS-ELISA kit from Sun Red. ..116

Figure 4-4. LPS standards compared to LPS standards spiked with serum or albumin. ..117

Figure 5-1. Correlation between successive serum baseline LPS levels from 15 subjects. ..135

Figure 5-2. Bland-Altman plots of LPS levels after consumption of water (A) and of aspirin solution (B) treatment. ..137

Figure 5-3. Box plots of % 3 hr recovery of total dose of lactulose (A) and of mannitol (B) and change in lactulose mannitol ratio (C) after the consumption of water or of aspirin solution. ..138

Figure 5-4. Correlations between % recovery of Lactulose (A) or LMR value (B) with differences in LPS levels prior to and after the consumption of aspirin solution (a symbol) or water (w symbol). ..139

Figure 6-1. Effect of dilution and a combination of dilution and heating of unspiked raw serum samples on their reaction curves. ..165

Figure 6-2. Comparison of curves of endotoxin standards (light lines) and endotoxin-spiked serum samples diluted 1:5 with LRW (A) and DA (B), respectively, that were subsequently heated to 70°C (heavy blue line), 75°C (heavy green line) or to 80°C (heavy red line) prior to spiking. ..167

Figure 6-3. Standardisation curves for various dose of endotoxin (0.2 to 0.0031 EU/ml) and plain LRW (0.0 EU/ml) showing the slopes of the linear portion of the curves (A) and the standard curve of log endotoxin concentration vs. calculated slope of the linear part of the reaction curve (B). ..167
Figure 6-4. Reaction curves of endotoxin standards showing the graphical principles underlying the determination of delta time between the time point at which OD reaches 0.5 unit above the initial value and that at which OD rises one unit above the initial value (A) and the corresponding standard curve of log endotoxin concentration vs. delta time (B)..........................168

Figure 6-5. Reaction curves of serum samples that were diluted with DA at a ratio of 1:10 and heated at 75°C (A) and 80°C (B), respectively, for 10 min to 240 min or heated at 70°C (C) and 75°C (D), respectively, for 5 to 15 min. ..171

Figure 7-1. Serum LPS level of women with CD and of healthy women after the ingestion of water (control) and Intralipid.................................190

Figure 7-2. Serum LBP level of women with CD and healthy women after the consumption of either water (control) or Intralipid.................................191

Figure 7-3. Correlation between LPS and LBP levels in serum..........................192

Figure 7-4. Serum triglyceride (TG) level in women with CD and healthy women after the ingestion of either water (control) or Intralipid.................................193

Figure 7-5. Box plots of percentage 3-h recovery of ingested dose of (A) lactulose and of (B) mannitol, and change in (C) LMR after consumption of water and of Intralipid for women diagnosed with CD (red box plots) and healthy women (blue box plots)...196

Figure 7-6. Correlation between the excretion of lactulose and serum baseline LPS level in women with CD (C) and healthy women (H)..........................197

Figure 9-1. OD at 450 nm for A) standard LPS provided with the kit from Cusabio, B) LPS from *E. coli* O55:B5, C) CSE from *E. coli* O55:B5 and D) faecal water. ..227
Figure 9-2. Reaction curves of the LAL assay A) of LPS from *E. coli* O55:5 and from faecal water; B) sample diluent and LPS standard from the LPS - ELISA kit.

Figure 9-3. Comparison of LPS standard curve with the LBP standard curve obtained using LPS - ELISA.

Figure 9-4. Correlation between serum LPS and LBP levels from repeated measurements from 10 subjects.

Figure 10-1. OD values of LBP at concentrations between 4.4 and 50 ng/ml (A) and the standard curve generated in the range from 9.9 to 50 ng/ml (B).

Figure 10-2. Reaction time of serum samples that have been spiked with a series of known concentrations of endotoxin prior to sample preparation.

Figure 10-3. Normalised reaction times of serum samples that have been spiked with series of known concentrations of endotoxin prior to sample preparation compared to those values of the endotoxin standards.

Figure 10-4. Comparison of the pooled linear curve obtained with a series of endotoxin standards in LRW (red line) with the pooled linear curve obtained with serum samples either from healthy women (blue line) or women with CD (black line) that were spiked with various concentrations of endotoxin.

Figure 11-1. Levels of systemic LBP (A) and CRP (B) and faecal calprotectin (C) in healthy women (CON) and in women with CD (CD).

Figure 11-2. Percentage of 3-h recovery of total dose of A) lactulose and B) mannitol, and C) Lactulose-Mannitol-Ratio in healthy women (CON) and those with CD (CD).

Figure 12-1. Schematic drawing of the transportation route of bacterial products such as lipopolysaccharide (LPS) from the gut lumen into the systemic circulation.
Figure 12-2. Mean levels of systemic endotoxin levels reported in pg/ml in healthy subjects...

Figure 12-3. Mean levels of systemic endotoxin reported in EU/ml in healthy subjects. Inset shows reports with values below 10 EU/ml.

Figure 12-4. Reported mean levels of systemic endotoxin in healthy subjects classified by method of preparation of samples prior to assay.

Figure 12-5. Comparison of reported mean levels of systemic endotoxin in healthy subjects and those in subjects with various diseases where samples were diluted and heated prior to LAL assay.

Figure 12-6. Comparison of reported mean levels of systemic endotoxin in healthy subjects before and after consuming a fatty meal where samples were diluted and heated prior to assay.
List of Tables

Table 2-1. Overview of the immune response to LPS depending on its structure and dose..52

Table 4-1. Recoveries of spiked endotoxin from diluted serum samples and from diluted and heated serum samples..115

Table 5-1. Mean LPS levels at baseline and 4 hours after taking water.................135

Table 5-2. Median serum endotoxin levels prior to and after the treatment with either water or aspirin...148

Table 6-1. Endotoxin levels in heated serum samples and percentage recoveries of spiked endotoxin in heated serum samples calculated on a basis of reaction time as recommended by the manufacturer, by V_MAX and by delta time...166

Table 6-2. Endotoxin concentrations in heated serum samples that were spiked with 5 EU/ml at a ratio 1:10 (v/v) prior storage overnight at either +4°C or -80°C with DA as diluent..170

Table 7-1. History of Crohn’s disease..183

Table 8-1. Levels of endotoxin observed in aqueous phase after admixture with Intralipid® 20 % and the corresponding values for the recovery of endotoxin...215

Table 9-1. Detected LPS levels in unspiked serum samples and their aliquots that have been spiked with 40 µg LBP/ml at a ratio of 1:10 prior to LPS - ELISA assay. ...230

Table 10-1. Observed endotoxin levels in serum and endotoxin-spiked serum after the sample preparation with the ESP™ kit..244

Table 10-2. Observed endotoxin levels in endotoxin-spiked serum after the sample preparation with and without proteinase K. ..245
Table 10-3. Observed endotoxin levels in endotoxin-spiked serum samples that have been diluted once prior to the first heating or that have been diluted twice (before and after the first heating step)..246

Table 10-4. Recoveries of endotoxin spiked into raw serum at a series of known concentration prior to sample preparation. ...247

Table 10-5. Levels of LBP in serum determined with different dilution factors.......250

Table 11-1. Clinical details of participants with Crohn’s disease..........................260

Table 11-2. Overview of percentage recoveries of endotoxin spiked into raw serum at various concentrations..268

Table 11-3. Results of classical discriminant analysis ..273

Table 12-1. Range of reported mean levels of systemic endotoxin in subjects with various hepatic diseases with concurrently determined mean levels in healthy control subjects...300
List of Abbreviations

AOAH Acyloxyacyl hydrolase
CD Crohn's disease
CD14 Cluster of differentiation 14
CRP C-reactive protein
DA Dispersing Agent
DCs Dendritic cells
ELISA Enzyme-linked immunosorbent assay
GALT Gut-associated lymphoid tissue
HDL High-density lipoprotein
HF High fat
IAP Intestinal alkaline phosphatase
IBD Inflammatory bowel disease
Ig A Immunoglobulin A
IL-1β Interleukin-1β
INFβ Interferon β
IRAK1 Interleukin-1 receptor-associated kinase 1
IRF3 Interferon regulatory factor 3
KO Knock out
LAL Limulus Amebocyte Lysate
LBP Lipopolysaccharide-binding protein
LDL Low density protein
LMR Lactulose - Mannitol - Ratio
LPS Lipopolysaccharide
LRW LAL reagent water
LTA Lipoteichoic acid
MALP-2 Macrophage-activating lipoprotein 2
MAPK Mitogen-activated protein kinase
MD-2 Myeloid differentiation factor 2
MyD88 Myeloid differentiation factor 88
NF-kB Nuclear factor kB
OD Optical density
O-PS O-polysaccharide
OS Oligosaccharide
PPC Positive Product Control
PPs Payer's patches
SHIP SH-2 containing inositol phosphatase
TG Triglyceride