
Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

The Development of a Low-Cost Robotic

Visual Tracking System

A thesis presented in partial fulfilment of the requirements for

the degree of

Master of Engineering

Mechatronics

at Massey University, Albany, New Zealand.

Shun Fan Chiang

2009

ACKNOWLEDGMENT

I wish to express my gratitude to my supervisor, Dr. Johan Potgieter, who was

abundantly helpful and offered invaluable assistance, support and guidance throughout

the duration of the project.

Special thanks also to all my graduate friends, especially Biqing Chen and Baden Rielly

for sharing the literature and invaluable assistance. Not forgetting to my best friend

Jennifer who always been there.

I wish to express my gratitude to my beloved families, for their understanding and

encouragement through my studies, in particular I would like to thank my parents for

their love and patience, my brother Vince and my cousin Kevin, without their assistance

this project would not have been made possible.

By The Author

Shun Fan Chiang

 I

ABSTRACT

This thesis describes a system which is able to track and imitate human motion. The

system is divided into two major parts: computer vision system and robot arm motion

control system. Through the use of two real-time video cameras, computer vision system

identifies the moving object depending on the colour features, as the object colour is

matched within the colour range in the current image frame, a method that employs two

vectors is used to calculate the coordinates of the object. After the object is detected and

tracked coordinates are saved to a pre-establish database in the purpose of further data

processing, a mathematical algorithm is performed to the data in order to give a better

robotic motion control. Robot arm manipulator responds with a move within its

workspace which corresponds to a consequential human-type motion. Experimental

outcomes have shown that the system is reliable and can successfully imitate a human

hand motion in most cases.

 II

Table of Contents

ACKNOWLEDGMENT ... I
ABSTRACT.. II
List of Figures..V
List of Tables ... VI

1. INTRODUCTION...- 1 -

1.1 Project background ..- 2 -
1.2 Object detecting and tracking technologies..- 2 -
1.3 Glove technologies...- 3 -
1.4 Robot arm manipulating system ...- 3 -
1.5 Objective and contribution ..- 4 -

2. LITERATURE REVIEW ..- 5 -

2.1 Introduction...- 5 -
2.2 Computer vision system ...- 6 -

2.2.1 Image segmentation ..- 6 -
2.2.1.1 Colour image segmentation...- 9 -

2.2.2 Image processing...- 12 -
2.2.3 Pixel ..- 14 -

2.2.3.1 Distance measurement...- 16 -
2.2.4 Colour image ...- 17 -

2.2.4.1 Colour models (Colour space)...- 17 -
2.3 Robot arm..- 25 -

2.3.1 Workspace ...- 26 -
2.3.2 Sensing ...- 28 -
2.3.3 Robot motion control..- 30 -
2.3.4 Motion planning ..- 34 -

3. COMPUTER VISION SYSTEM ..- 36 -

3.1 Introduction...- 36 -
3.2 Why a computer vision system ..- 36 -

3.2.1 Magnetic tracking system...- 37 -
3.2.2 Acoustical tracking system...- 37 -
3.2.3 Optical tracking system..- 38 -

3.3 Computer vision module ..- 39 -
3.4 Colour tracking of computer vision module.....................................- 41 -
3.5 Image frame differencing ...- 44 -
3.6 Histogram analysis..- 44 -
3.7 Control commands..- 46 -
3.8 Space coordinates acquiring ..- 46 -

3.8.1 System method ..- 48 -
3.9 Object positioning algorithm ...- 48 -

3.9.1 Bi-Vector..- 48 -

 III

3.9.2 Perspective ...- 50 -
3.9.3 Methods combination ...- 51 -

3.10 Computer vision module interacting with human hands................- 52 -

4. ARM MANIPULATION SYSTEM ..- 54 -

4.1 Introduction...- 54 -
4.2 Arm manipulator specification..- 54 -
4.3 Drive unit and interfacing ..- 56 -
4.4 Operation space...- 57 -
4.5 Control and commands ..- 58 -

5. OVERALL OPERATING SYSTEM ..- 63 -

5.1 Introduction...- 63 -
5.2 GUI of computer vision system..- 63 -
5.3 GUI of arm manipulator ..- 69 -
5.4 System flowchart...- 70 -
5.5 Testing on the system..- 71 -

6. CONCLUSION ...- 78 -

7. DISCUSSION AND FURTHER IMPROVEMENT ...- 80 -

REFERENCES..- 82 -

Appendix A Object Tracking System GUI...- 87 -

 IV

List of Figures

Figure 2.1 Image Engineering and image segmentation ...- 7 -
Figure 2.2 Image segmentation in RGB colour model with interest colour
region ..- 10 -

Figure 2.3 Result of colour segmentation ...- 10 -
Figure 2.4 Image segmentation in HIS colour model ..- 11 -
Figure 2.5 Image formation ...- 12 -
Figure 2.6 Matrix of pixels array...- 14 -
Figure 2.7 (a) 8-adjacent (b) m-adjacent ..- 16 -
Figure 2.8 CIE chromaticity diagram...- 18 -
Figure 2.9 Colour mixture of light...- 20 -
Figure 2.10 RGB colour model coordinate system ..- 20 -
Figure 2.11 Colour mixture of pigment ..- 22 -
Figure 2.12 HSI colour model ..- 23 -
Figure 2.13 Human arm manipulator...- 26 -
Figure 2.14 Workspace of an arm manipulator...- 27 -
Figure 2.15 PID control ..- 32 -
Figure 2.16 An example of direct transformation..- 33 -
Figure 2.17 An example of inverse transformation ...- 34 -
Figure 3.1 CMU2+ Camera module..- 39 -
Figure 3.2 Board layout..- 40 -
Figure 3.3 Colour tracking of orange and red by CMU2+ camera........................- 43 -
Figure 3.4 Image frame differencing...- 44 -
Figure 3.5 Histogram analysing...- 45 -
Figure 3.6 Exaggerated problem ...- 50 -
Figure 4.1 RV-M1 Movemaster arm manipulator...- 55 -
Figure 4.2 Dimensions of RV-M1 ..- 55 -
Figure 4.3 Operating range..- 57 -
Figure 4.4 System operating space ..- 58 -
Figure 5.1 GUI of computer vision system ...- 64 -
Figure 5.2 Specific colour glove ...- 65 -
Figure 5.3 Trajectory of object move..- 66 -
Figure 5.4 Average of object trajectory ..- 69 -
Figure 5.5 GUI of robot arm manipulator..- 69 -
Figure 5.6 System flowchart...- 71 -
Figure 5.7 Actual robot arm movement..- 73 -
Figure 5.8 Arm manipulator movements..- 74 -
Figure 5.9 Arm manipulator with glove on ..- 74 -
Figure 5.10 Trajectories of arm manipulator move ..- 76 -
Figure 5.11 Trajectories of arm manipulator after averaging- 77 -

 V

List of Tables

Table 1.1 2-D and 3-D robot arm manipulator ..- 4 -
Table 2.1 General classification of segmentation algorithms....................................- 9 -
Table 2.2 Image extension ..- 14 -
Table 2.3 RGB value of colours ...- 21 -
Table 5.1 Trajectories recorded in database ..- 66 -
Table 5.2 Average of object trajectories ...- 68 -
Table 5.3 Arm manipulator trajectories...- 76 -

 VI

Introduction

1. INTRODUCTION

As human beings, we communicate with our physical world through vision, touch,

and sound. We perform our daily tasks through the use of our hands. However, in an

effort to change this, people have been designing, building, and analysing ways of using

modern technology to imitate human motion [Sturman].

Advances in technology and the use computation technologies have helped to

develop object detection and imitating systems become more affordable.

 Repetition visual tracking of objects and image features is a challenging task with

many potential practical applications. Real-time three-dimensional tracking of a moving

object is an important requirement for many growing industry applications. Visual

tracking techniques can be employed in many areas from the military and surveillance,

through to medicine and the film and special effects industries.

By using the most recent technologies, objects can be detected, tracked, recorded,

imitated and applied to develop an object tracking imitation system. The objective of this

project is to research and build a robust system which can locate and track a moving

object, for example a human hand, in a three dimensional coordinate space system

accurately.

 - 1 -

Introduction

1.1 Project background

This thesis introduces a camera base motion analysis approach to describe a visual

tracking system that tracks a hand motion of human being. The goal of this project is to

develop and operate an accurate and robust tracking system for use in an augmented

reality application. Augmented reality combines computer graphics and virtual-reality

displays with images of the real world. A hardware system and method of tracking are

going to be discussed, and a coordinate system which uses to direct the hand movement is

going to be developed for further robotic imitation application.

For the purpose of interpreting a motion movement, an object tracking system had

been developed and introduced to the industry many years ago by using mechanic and

electronic technologies.

In 1970, researchers in MIT developed a general-purpose computer system that

input the interpretation of hand motion directly by using 3-space tracking sensors. The

system is now improved and widely used, by emitting a pulsed magnetic field (from

origin point), the cooperate sensors attached on the moving objects response their

position and orientation relate to the origin, and the information were used for a further

graphic application [Sturman].

1.2 Object detecting and tracking technologies

Object positioning is characterized by the location of the object in space and

relate the coordinates to the orientation system. Three technologies are used

predominantly to track the position of an object. Magnetically based, uses a magnetic

field radiating source and sensors that reports the position and orientation with respect to

the origin source; acoustically based, using triangulation of ultrasonic “pings” to locate

the object; or optically based, using cameras to examine the object from a distance

[Sturman].

 - 2 -

http://www.cs.unc.edu/~azuma/azuma_AR.html

Introduction

1.3 Glove technologies

Tracking single object alone has received considerable attention, tracking multiple

objects simultaneously can be more useful, however more problematic. It is more useful

because objects we want to track often exist in close proximity to other similar objects. It

is more problematic because the objects of interest can touch, occlude, and interact with

each other; they can enter and leave the image; and we must be able to tell them apart. In

addition, multiple object tracking deal with all the hard problems of single object tracking,

including running at a reasonable rate and adapting to changing background conditions

[Multi Object Tracking].

The development of electronic glove technologies has been tried to overcome

problems of detecting hand motion and uses as interface to computer applications. Glove

devices measure the shape of hands and uses electronic device to discriminate between

the fingers and palm [Sturman].

Over the past decade, many researchers have built hand measuring devices for

computer input. The differences between them are the makers and material of glove been

used for tracking.

1.4 Robot arm manipulating system

 There are many kinds of manipulation system in the industry, to choose a suitable

robot arm to accomplish the goal is the primary task. Most robot arm manipulators are

operating in two-dimension and three-dimension space, and it is determined by the

degree-of-freedom.

 - 3 -

Introduction

2-D Translation only 2-DOF

2-D Translation and orientation 3-DOF

3-D Orientation only 3-DOF

3-D Translation and orientation 6-DOF

Table 1.1 2-D and 3-D robot arm manipulator

An example of 2-D robot is the mobile robot that moving on the floor, and a manipulator

robot arm doing car painting is an example of 3-D robot.

1.5 Objective and contribution

 The final task of this project is going to be the interaction of a computer vision

system with an actuating robot arm, in order for the manipulator arm to move through the

path direct by a human being and without harming the environment.

 A complete system allows the users to control the robot through the path they

intend to, in advance applications, in certain dangerous or complex industry, some

manual jobs can be replaced by the operating system. With an additional on-line system

which enables the robot to be controlled remotely in real-time or off-line.

 - 4 -

Literature Review

2. LITERATURE REVIEW

2.1 Introduction

 Before starting to design and build a computer vision - aid arm imitation robot

system, related works and applications of human imitation system need to be investigated

and understood. A successful system can be divided into two regions of study, capturing

and moving. Therefore, detailed knowledge of computer vision system concepts in

detecting and tracking such as image segmentation, colour space, colour transformation,

and image processing are essential. Moreover, how to sense a moving human body and

what algorithm and technique to be used must be described. In more detail, it is important

that the computer vision system is operating under a consistent coordinate system with

the environment, hence, an explanation of how the computer vision coordinate system

relating to three dimension real world environment and the executing robot arm is going

to be mentioned.

In addition to the above information, a basic concept of the robot and controlling

the arm manipulator to act as a human arm in a steady state with the given trajectories is

addressed in the second part of this chapter.

 - 5 -

Literature Review

2.2 Computer vision system

Computer vision system has reached a level of maturity that allows us to not only

delve into the field of computer vision, but also expand the research territory which leads

to the building of a further robust integrated system of significant complexity.

 Computer vision automates and integrates a wide range of processes used for

vision perception. It includes many techniques and algorithms that are useful by

themselves, such as image processing (transforming, encoding, and transmitting images)

and statistical pattern classification (statistical decision theory applied to general patters,

visual or otherwise). Moreover, it also includes techniques for geometric modelling and

cognitive processing [Sebe]. These progresses provide mathematical information for the

use of images to reconstruct and model the environment.

Computer vision is not like human vision. It is not affected by the visual band or

electromagnetic spectrum. Many computer vision applications involve tasks that require

either work in a hostile environment, a high rate of processing, access and use of large

databases of information, or are tedious for people to perform. Computer vision systems

are used in many and various types of environments, for example, in manufacturing

systems, computer vision is often used for product quality control.

2.2.1 Image segmentation

 Image and video segmentation is one of the most critical tasks of analysis which

has the objective of extracting information from an image or a sequence of images. The

field of image and video segmentation had great advancement and progress especially in

recent years.

 According to structure of image engineering (IE) framework, image techniques

and algorithms can be organized into three levels: image processing (low level), image

analysis (mid level) and image understanding (high level), as shown in figure 2.1. Low

 - 6 -

Literature Review

level image operation includes pre-processing works such as image noise reduction or

contrast adjustment, yet, the inputs and outputs are both images. In the mid level, process

of segmentation and classification of object are involved, in addition, usually the inputs

are images, and outputs are the characteristic extract from the input image (edges,

contours). A high level processing that employs the data from previous operations to

perform a function of image which associate with computer vision, for example, object

recognition [Zhang].

Image
Understanding

Figure 2.1 Image Engineering and image segmentation [Zhang]

As shown in figure 2.1, image segmentation is the primary and most important

step of image analysis procedures. Purposing of image analysis is intended to retrieve the

information which interesting (object) through the process of image segmentation, object

representation and feature measurement. On the other hand, through the process of

partition an image into regions that allows to perform a task such as objects recognition

in post-processing. Since image segmentation is first step of analysis, this part of process

become extremely important because it is affecting the accuracy of following procedure

object representation and also the outcome of feature measurement.

 Considering image segmentation as the partition of an image into a set of non-

overlapping regions whose union is the entire image, some rules to be followed for

regions resulting from the image segmentation can be stated as:

Image
Analysis

Feature
Measurement

Image
Processing

Object
Representation

Image
Segmentation

Data
Out

Image
In

 - 7 -

Literature Review

1. They should be uniform and homogeneous with respect to some characteristics;

2. Their interiors should be simple and without many small holes;

3. Adjacent regions should have significantly different values with respect to the

characteristic on which they are uniform; and

4. Boundaries of each segment should be simple, not ragged, and must be spatially

accurate.

The technique of evaluation of image segmentation can be categorized in to two

types: characterization and comparison. A formal definition of image segmentation,

supposing the whole image is represented by R and Ri, where ni ,,2,1 K= are disjoint

non-empty regions of , consists of the following conditions: R

1. ; RRi
n

i

=
=
U

1

2. for all i and , i ≠ , there exits ; j j I ∅=RjRi

3. for 1, 2, ..., n , it must have =i TRUERiP =)(;

4. for all i ≠ , there exits ; j U FALSERjRiP =)(

5. for all , ni ,,2,1 K= Ri, is a connected component.

where is a uniformity predicate for all elements in set and represents an

empty set [Zhang].

)(RiP Ri ∅

From the above, five conditions can be described in more detail as below: the

region of segmentation could be all pixels from an image, but each region can not overlap

with the others, pixels are connect with each other in within same segmented region, and

they should contain similar properties or information, in other words, pixels in different

region of segmentation should have different properties.

With several of segmentation algorithms been developed, a classification of

techniques can be made in six groups:

 - 8 -

Literature Review

1. Thresholding

2. Pixel classification (including relaxation, Markov random field based approaches and

neural network based approaches)

3. Range image segmentation

4. Colour image segmentation

5. Edge detection

6. Methods based on fuzzy set theory (including fuzzy thresholding, fuzzy clustering

and fuzzy edge detection) [Zhang].

Discontinuity and similarity are two properties to use while segmenting a grey

level image. Two types of algorithms can be classified, edge-base use the property of

boundaries to detect object, region–base use property of object areas. However, based on

the process strategy, the algorithms can be partitioned into parallel and sequential process

[Zhang]. Combining the properties from above, four groups of algorithm techniques are

defined in table 2.1:

Classification Edge-based (discontinuity) Region-base (similarity)

Parallel process G1: Edge-based parallel process G3: Region-base parallel process

Sequential process G2: Edge-based sequential process G4: Region-base sequential process

Table 2.1 General classification of segmentation algorithms [Zhang]

2.2.1.1 Colour image segmentation

 Segmentation is a process that partitions an image into regions of interest.

Although there are many algorithms of doing colour image segmentation with different

colour model, the one that produces the most accurate result is chosen. Two algorithms to

segment basic colour models are going to introduce as follow.

 - 9 -

Literature Review

The segmentation of an object from the image of RGB colour model is performed

by specifying a colour range in an RGB image, in the other words, the pixel is satisfied to

the colour criterion must carry the RGB values within the colour range.

Figure 2.2 Image segmentation in RGB colour model with interest colour region

From above figure, a reddish colour sample is assigned, a colour range is determined base

on the point, after that, a binary mask (black or white) is added, if the pixel containing

reddish RGB values within the colour range, it shows white, if not, black colour is

displayed, as shown in figure 2.3.

Figure 2.3 Result of colour segmentation

 - 10 -

Literature Review

 Colour image segmentation base on HSI model is convenient because of the hue

and saturation properties. Hue property is used to identify colours and saturation is useful

in masking process. After generating three components from the image (hue, saturation,

intensity), a binary mask is completed by setting the threshold value according to the

maximum value of saturation, for example, 10% of the maximum saturation value, any

pixel carrying more than the threshold value will show white (1) in binary mask, on the

other hand, the pixel carrying lower than the threshold value will display black (0).

Performing a mathematical product of multiplication with hue image and binary mask,

that produces the result of image segmentation.

Figure 2.4 Image segmentation in HIS colour model [Gonzalez]

 - 11 -

Literature Review

This is a basic algorithm which has been used to segment a colour image in HSI

colour model. There are many other ways to perform the task by using the properties of

colour model. Normally, using HSI colour model is more intuitive in colour image

segmentation, but RGB colour vectors contain better result [Gonzalez].

2.2.2 Image processing

A two-dimension function which represents the intensity of a digital

image, where and are plane coordinates, and the value is determined by the physical

source of image. Illumination and reflectance are two physical components which forms

the image of an element, in the other words, the production of the physical process that

produces the image outcome.

),(yxf

x y f

Figure 2.5 Image formation

 From the result of a scene image, must be non-zero and finite, therefore,),(yxf

∞<<),(0 yxf

 - 12 -

Literature Review

Since the image is generated by the physical component illumination and reflectance,

thus,

),(),(),(yxryxiyxf ×=

Where

∞<<),(0 yxi

and

1),(0 << yxr

in a gray level

)(00 yxfl =

it is evident that l is between

maxmin LlL ≤≤

minL is and is < ∞ , hence 0> maxL

minminmin riL = and maxmaxmax riL =

[Gonzalez]

 Above values are the boundaries in theoretical, through experiments, some

average values of and are analyzed. For an indoor operation, the),(yxi),(yxr

 - 13 -

Literature Review

illumination level in an office is , for reflectance, 0.01 for black velvet, 0.65

for stainless steel, 0.80 for white paint, and 0.93 for snow [Gonzalez].

2/1000 mlm

Since the discovery of the imaging concept, a number of improvements have been

made to the image formation technique. As a two-dimensional still grey level image, a

combination of three-dimensional, moving, and colour image function can be expressed

as follow:

2-D => 3-D),,(),(zyxfyxf =>

2-D Still image => 3D Moving image),,,(),(tzyxfyxf =>

2-D Grey still image => 3-D Colour moving image),,,(),(tzyxfyxf =>

Table 2.2 Image extension

where z represents the vector in a plane coordinate, and t = temporal.

2.2.3 Pixel

A point is the smallest unit in our physical vision. By the same token, a digital

image consists of thousands of points, and these points are called pixel in computer

vision.

Assuming an image is sensed with),(yxf M rows long and columns wide,

thus, it can be represented as a

N

NM × matrix of pixels array. Following matrix notation

will help to ease of understanding:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−−−

−
−

=

)1,1()1,1()0,1(

)1,1()1,1()0,1(
)1,0()1,0()0,0(

),(

NMfMfMf

Nfff
Nfff

yxf

L

MMM

L

L

Figure 2.6 Matrix of pixels array

 - 14 -

Literature Review

A pixel has four neighbours in horizontal and vertical directions whose

coordinates can be expressed as:

),(yx

)1,(),,1(),1,(),,1(−++− yxyxyxyx

above four pixels are called four-neighbours of pixel , and with a notation of

. And four neighbours in diagonal direction, they are:

),(yx

),(4 yxN

)1,1(),1,1(),1,1(),1,1(−−−++++− yxyxyxyx

above eight pixels are called eight neighbours of pixel , and with a notation of

.

),(yx

),(8 yxN

Two pixels are said to be connected if they are neighbours and carrying same

value of similarity (binary image 0 or 1, gray level from 0 to 255, etc.). There are three

ways to identify adjacency, assuming U contains the value of similarity, then:

1. 4-adjacency. Two pixels and , is in , and carrying same

value of U .

),(yx),(ts),(ts),(4 yxN

2. 8-adjacency. Two pixels and , is in , and carrying same

value of U .

),(yx),(ts),(ts),(8 yxN

3. m-adjacency. Two pixels and , both carrying same value of U , and),(yx),(ts

a) is in , or),(ts),(4 yxN

b) is in and is not carrying the same

value as U .

),(ts),(yxNdiagonal I),(),(44 tsNyxN

m-adjacency has a advantage to remove the a ambiguities from 8-adjacency. It is showing

in figure 2.7:

 - 15 -

Literature Review

 (a) (b)

Figure 2.7 (a) 8-adjacent (b) m-adjacent [Gonzalez]

A binary representation is used in above figure, 0 and 1 are the values of similarity

contained by U . From figure 2.7 (a), an ambiguity has discovered in top-right pixel, by

following the m-adjacency rule, top-right pixel and central pixel has two coincident

pixels which are top-central pixel and central- right pixel, but only central-right pixel not

carrying the similarity value, and thus, it is not connect to the central pixel, hence,

ambiguity has removed.

4N

2.2.3.1 Distance measurement

 Some simple mathematical function and algorithms can be employed to measure

the distance between pixels:

let d be the function of pixels distance, assuming three pixels with coordinates of ,

, , then:

),(yx

),(ts),(wv

1. (0)],(),,[(≥tsyxd 0)],(),,[(=tsyxd if qp =)

2. and)],(),,[()],(),,[(yxtsdtsyxd =

3.)],(),,[()],(),,[()],(),,[(wvtsdtsyxdwvyxd +≤

Pythagorean theorem can be used to calculate geometry distance:

22)()()],(),,[(tysxtsyxd −+−=

 - 16 -

Literature Review

[Gonzalez]

2.2.4 Colour image

The use of colour in image processing increases the ability to track an object from

the apparent characteristic and the process to identify an object is simplified, making the

detection and extraction of captured image easier. Colour image are partitioned into two

kinds of processes, full-colour and pseudocolour. A full colour image process needs

associated equipment to sense the environment, such as colour camera or colour scanner

and which are more expensive compare to the other process. Pseudocolour image process

is done by assigning a particular colour and intensity to monochrome form, this is how

most colour image process done in recent years.

2.2.4.1 Colour models (Colour space)

 Red (R), green (G), and blue (B) are called primary colours of light, more

additively, cyan (C), magenta (M), yellow(Y) are secondary colours, a combination of

primary and secondary colours with different proportion that generates most of the

environment colours been seen. An aid of CIE chromaticity diagram which describes the

distribution of colours:

 - 17 -

Literature Review

Figure 2.8 CIE chromaticity diagram

 Different amounts of red, green, and blue been used to form a particular colour

are called tristimulus values, and denoted as , and the relationship among

them are:

ZYX ,,

ZYX
Xx
++

=

 - 18 -

Literature Review

ZYX
Yy
++

=

ZYX
Zz
++

=

and it is note from above equations that

1=++ zyx

[Gonzalez]

 A colour model is a specification of a coordinate system and each colour is

represented by a point within the system.

A RGB colour model is generated base on Cartesian coordinate system by

assigning each primary and secondary colour to a corner in a cube. The black is at the

origin, then, red, green, and blue are connected to black in zyx ,, directions. According

to the rule of mixtures of light,

cyanbluegreen =+

magentaredblue =+

yellowgreenred =+

whitebluegreenred =++

 - 19 -

Literature Review

Figure 2.9 Colour mixture of light

hence, the secondary colours can be assigned. The green corner is connected to the cyan

corner, and the blue corner is also connected to the cyan corner; the blue corner is

connected to the magenta corner, and the red corner is also connected to the magenta

corner; the red corner is connected to the yellow corner, and the green corner is also

connected to the yellow corner. White is directly opposite to the black in the farthest

corner. By connecting a line directly from black to white, this is called the line of grey

scale. A RGB colour model coordinate system is shown in figure 2.10.

Figure 2.10 RGB colour model coordinate system

 - 20 -

Literature Review

in 24-bit colour image, RGB colour model contains colours. Some

RGB values of colours are shown in table 2.3.

16777216)2(38 =

R G B Colour

0 0 0 Black

255 0 0 Red

0 255 0 Green

0 0 255 Blue

0 255 255 Cyan

255 0 255 Magenta

255 255 0 Yellow

255 128 128 Bright Red

128 255 128 Bright Green

128 128 255 Bright Blue

64 64 64 Dark Grey

128 128 128 Intermediate Grey

192 192 192 Bright Grey

255 255 255 White

Table 2.3 RGB value of colours

A colour model of CMY is used in most output devices (not a display device)

such as colour printers, a data input in CMY form is required, and thus, a conversion

equation that performs RGB to CMY is generated:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

B
G
R

Y
M
C

1
1
1

and rules for pigment mixture to produce colours are as follow:

 - 21 -

Literature Review

bluemagentacyan =+

redyellowmagenta =+

greencyanyellow =+

blackyellowmagentacyan =++

Figure 2.11 Colour mixture of pigment

According to the pigment mixture rule, yellowmagentacyan ++ that produces a colour

in black, but in practice, a muddy looking black is produced, therefore, a fourth colour

black is added to generate a true black, and this kind of colour model is called CMYK,

where K represents black.

 As human viewing an object, hue, saturation, and intensity are three properties

used to describe an image:

1. Hue associates to a colour with some position in the colour spectrum – red, green,

blue etc.

 - 22 -

Literature Review

2. Saturation gives a measure of the degree to which a pure colour is diluted by white

light.

3. Intensity corresponds to the brightness of a colour

[Sebe]

 HSI colour model can be represented by following diagrams:

Figure 2.12 HSI colour model

In above diagram, primary and secondary colours divide the circumference into six

sectors equally, any colour inside the cone contains information of hue, saturation, and

intensity. H = hue, which is the angle between the red axis and the pixel; S = saturation,

where the length of pixel determines the saturation; I = intensity, the depth of the pixel

determines the value.

RGB and HSI colour models existing following relationship, in the situation of

converting colours from RGB to HSI:

 - 23 -

Literature Review

θ=H if GB ≤

θ−= 360H if GB >

and

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

−−+−

−+−
= −

2
1

2

1

)])(()[(

)]()[(
2
1

cos
BGBRGR

BRGR
θ

[]),,min(31 BGR
BGR

S
++

−=

)(
3
1 BGRI ++=

[Gonzalez]

in above equation, θ is the angle between the pixel and red axis in HIS model. In the

situation of converting colours from HSI to RGB:

in sector, RG °<≤° 1200 H

)1(SIB −=

)60cos(
cos1[

H
HSIR
−°

+=

)(3 BRIG +−=

in GB sector, °<≤° 240120 H

°−= 120HH

 - 24 -

Literature Review

)1(SIR −=

⎥
⎦

⎤
⎢
⎣

⎡
−°

+=
)60cos(

cos1
H

HSIG

)(3 GRIB +−=

similarly, in BR sector, °<≤° 360240 H

°−= 240HH

)1(SIG −=

⎥
⎦

⎤
⎢
⎣

⎡
−°

+=
)60cos(

cos1
H

HSIB

)(3 BGIR +−=

[Gonzalez]

2.3 Robot arm

Humans are good at moving around in the real world, if human needs robot to

operate like humankind, the robot needs to be taught how to perform actions like a human.

In certain environment, robot has found to be better at execution than humans, so it can

be imagined that a world with robotic technologies which improve humans life easier and

better. As described in Webster’s Dictionary, a robot is an automatic apparatus or device

that performs functions ordinarily ascribed to humans, or operates with what appears to

be almost human intelligence [Lumelsky].

 - 25 -

Literature Review

Figure 2.13 Human arm manipulator [Robot Arm Tutorial]

 Basically a robot combines of three components, mechanics parts, computing

algorithms, and sensing devices. A robot senses the environment information by sensing

devices internally and externally, information is computed through a series of algorithms

to generate useful inputs, consisting above progresses, mechanics parts are triggered to

perform a motion as output. From above statements, to plan a motion with avoidance of

object collision within certain workspace is main task of robot operation, without a clear

definition of uncertain environment which is hazardous to both environment and robot, in

other words, a robust robot manipulation system that accomplish tasks within its

workspace without hitting or bumping into any unexpected object.

2.3.1 Workspace

The real world robot operates within a workspace either in two-dimensional space

or three-dimensional space, for example an arm manipulator.

The physical structure of the robot can be considered as consisting of the arm and

the hand. The arm generates the primary workspace which determines the regional

structure and orientation structure, regional structure that describes the position of the

 - 26 -

Literature Review

arm, and orientation structure deals with the tool orientating. The hand generates the

secondary workspace of a robot. The robot workspace is all places that the end effector

can reach. The workspace is dependent on the angle limitations of robot degree of

freedom, the arm link lengths, the angle between the link, etc. Some workspaces are

spherical and some workspaces have very complicated shapes. While choosing a suitable

robot arm to an industrial purpose, it is important that the workspace is large enough to

cover all positions need to be reached by the robot arm [RRG].

The workspace of a robot is an important criterion in evaluating manipulator

geometries. Manipulator workspace may be described in terms of the dexterous

workspace and the accessible workspace. Dexterous workspace is the volume of space

which the robot can reach with all orientations. The end-effector can be arbitrarily

oriented in each point of dexterous workspace. The accessible workspace is the volume

of space which the robot can reach in at least one orientation. In the dexterous workspace

the robot has complete manipulative capability. However, in the accessible workspace,

the manipulator's operational capacity is limited because the terminal device can only be

placed in a restricted range of orientations [RRG].

Figure 2.14 Workspace of an arm manipulator [CSS]

 - 27 -

Literature Review

Figure 2.14 represents the workspace of the robot. The robot's workspace is the

complete surface area of the sphere except the bottom which is the base of the robot,

which the arm of the robot can not reach. Different sizes of workspace may generated by

changing the length of link, but this would be the general shape. If there is any obstacle

within the workspace of the arm movement, the shape can be more complicated.

2.3.2 Sensing

The robot moves depending on the information sensed. There are two situations

may occur, complete information about the objects within the workspace is provided to

the robot prior to move; there is incomplete and uncertainty about the environment

information and may be obtained by the sensors in real time operation.

As the information of workspace is complete available to the robot, a method is

employed to approach motion planning. Geometric approach is an example to solve

motion planning, since complete information is obtained, this method relies on the

principles of geometric space and the properties of the robot and obstacles in the

workspace. Geometric approach can be summarized as follows:

1. It is applicable primarily to situations where complete information about the task is

available.

2. It relies on geometric properties of objects.

3. It can, in principle, deliver the optimal solution.

4. It can, in principle, handle tasks of arbitrary dimensionality.

5. It is exceedingly complex computationally in more or less complex practical tasks

[Lumelsky].

In the situation of incomplete information is provided, the environment

information is fetched by the sensors, then the robot “think” what to do according to

limited sensed data, thus, to solve motion planning based on topological properties of

space is approached. A topological approach can be summarized as follows:

 - 28 -

Literature Review

1. It is suited to unstructured tasks, where information about the robot surroundings

appears in time, usually from sensors, and is never complete.

2. It relies on topological, rather than geometrical, properties of space.

3. It can not in principle deliver an optimal solution.

4. It can not in principle handle tasks of arbitrary dimensionality, and it requires

specialized algorithms for each type of robot kinematics.

5. It is usually simple computationally: If a technique us applicable to the problem in

hand, it will likely be computationally easy [Lumelsky].

Most robot arms only have internal sensors, such as encoders. Additional sensors

such as visual, haptic, and tactile, etc, may be added to help retrieving information from

the environment.

It is common that visual sensor has been used popular to sense surroundings, a

robot arm can simply moves from one point to another without pre-programmed position

by using a visual feedback algorithm, moreover, if the arm can locate a position in X-Y

space of an image, it could then lead the end effector to go to that same X-Y location.

Haptic sensing involves human in the control loop. In this kind of application,

human is capable of controlling the robot arm remotely. This is accomplished by wearing

a special glove, or by operating a simulation model. In more advance, some robot arms

carrying feed back sensors, such as touch sensors, which gets directed back to the human.

Tactile sensing usually involves force feedback sensors and current sensors.

These sensors are physically touching the environment. Sensors detect unexpected force

or current spike to inform the robot a collision has occurred. By measuring the force at

the end effector, the robot will “know” the state of the griper, is it too tight or too lightly.

In another way of sensing, collision may be detect by using current sensors, sudden

current changes which means a collision has occurred [Robot Arm Tutorial].

To determine what type of sensing is suitable for a robot motion application,

 - 29 -

http://www.societyofrobots.com/sensors_encoder.shtml
http://www.societyofrobots.com/sensors_forcetorque.shtml
http://www.societyofrobots.com/sensors_currentsensor.shtml

Literature Review

actually, all kinds of sensing is fine, as long as a proper motion planning algorithm is

employed, even a simplest tactile sensing can guarantee to direct a robot to reach its

target position [Lumelsky].

2.3.3 Robot motion control

A successful control of a robot motion is based on the algorithm been performed

to direct the motors electrically and mechanically.

While performing a regulation of controlling the motion of arm motors, an

appropriate relationship is established with the desire position and corresponding actual

position. This relationship can be distinguished into three types:

1. Open loop control: the control system is regardless the system error.

2. Linear control: the control algorithm is a linear relationship.

3. Nonlinear control: the control algorithm is a nonlinear relationship.

An open loop control is a control algorithm without error correction. Linear control and

nonlinear control belong to close loop feedback control which performs error corrections.

Closed loop control means a method in which a real-time measurement of the process

being controlled is constantly fed back to the controlling device to ensure that the value

which is desired. PID control is a common type of close loop feedback control algorithm

that widely used in controlling robot motion. PID involves three mathematical control

functions: Proportional, Integral and Derivative, these values are used in helping the

robot moves smoothly to the desire position. Proportional parameter is the most

important value in PID control. The proportional control gain has an overall influence on

the performance of close loop control system, determining that gain of proportional

control that makes the closed-loop control system stable, reasonable smooth and accurate.

The proportional control gain determines the magnitude of the difference between the set-

point and the error, and then applies appropriate changes to the control variable to

eliminate error. A control action proportional to the integral of the error signal in a PID

 - 30 -

Literature Review

control law allows reducing accumulated errors over time. Integral control examines the

offset of set-point and error over time and corrects it if necessary. In order to compensate

for the loss of stiffness of the system, we need the derivative parameter. Derivative

Control monitors the rate of change of the error and consequently makes changes to the

output to accommodate unusual changes.

(a)

(b)

 - 31 -

Literature Review

(c)

Figure 2.15 PID control

 From figure 2.15 (a) above, the steady-state error looks good but the settling time

is too long, as is the overshoot, and the steady-state error to a disturbance is large. By

adding an integral term will eliminate the steady-state error and a derivative term will

reduce the overshoot. In figure (b), the response is faster than previous figure by

adjusting the P, I values, but the large I value has worsened the transient response. In (c),

after adjusting the D value, derivative term will reduce the overshoot and get to the desire

set-point smoothly.

 In working with robotics motion control, account with for inertia, resistance, and

other variables is needed. Careful selection of the PID gain values can minimize

oscillation and overcompensation.

Most common application of a robot arm manipulator is to move from one

position to another. People prefers to describe a position of an object in Cartesian

coordinate system , similarly, robot is often commanded in this kind of manner.),(yx

There are two ways of transformation to calculate positions of robot arm, a two-

dimensional arm manipulator is used to illustrate in this example:

 - 32 -

Literature Review

1. Direct transformation, by knowing the properties of the robot arm such as length of

the arm , , angles between the link 1l 2l 1θ , 2θ , a corresponding position of end-

effector in Cartesian coordinate system can be found.),(yx

⎥
⎦

⎤
⎢
⎣

⎡
++
++

=⎥
⎦

⎤
⎢
⎣

⎡
)sin(sin
)cos(cos

21211

21211

θθθ
θθθ

ll
ll

y
x

[Lumelsky]

Figure 2.16 An example of direct transformation

From above diagram, a corresponding position of the robot arm end-effector is found

 and by calculating with)83.3,21.3(1 =j)53.8,92.4(2 =j 51 =l , , 52 =l °= 501θ ,

and °= 202θ .

2. Inverse transformation, this transformation is employed in an inverse situation. As the

robot arm is arrived in certain position of Cartesian coordinate system by the sensed

data, corresponding values of robot arm can be determined by the following

calculation.

 - 33 -

Literature Review

221

2211
1 cos

sintantan
θ

θ
θ

ll
l

x
y

+
−= −−

21

2
2

2
1

22

2 2
cos

ll
llyx −−+

=θ

[Lumelsky]

Figure 2.17 An example of inverse transformation

From figure 2.17, corresponding values of the robot arm end-effector in position

 is found)8,5(938.62490441 =θ and 38.73942462 =θ with 51 =l and . 52 =l

2.3.4 Motion planning

Since a good robot is built up by many components’ contribution, motion

planning capability is essential for autonomous robot system, the task is to generate a

collision-free path for a movable object among known and static obstacles. It is not hard

to understand that the motion planning is kind of space problem, therefore, a success

motion planning that drives the robot to operate in one or more of the following ways:

 - 34 -

Literature Review

1. Execute the predefined path.

2. Find an optimal path.

3. Plan a “reasonable” path.

4. Plan a path that respects some constrains

[Lumelsky].

From previous chapters, again, motion planning is based on the purposed of

collision avoidance, it brings the way to approach the problem into two groups:

1. Motion planning with complete information (off-line planning): all the information is

available beforehand, and an optimal path can be found by computation before the

robot start moving.

2. Motion planning with incomplete information (on-line motion planning): the optimal

path is found by computing information collected by the real time sensing devices,

and decision is made continuously with robot move.

Most of the current approaches to path planning are based on the concept of

configuration space (C-space) introduced by Lozano-Pérez and Wesley. C-space is the set

of all possible configurations of a robot. Once the problem has been formulated in the C-

space, it becomes equivalent to finding a connected sequence of collision-free

configurations from the start configuration to the final configuration. The number of

independent parameters needed to fully specify a robot configuration is the dimension of

the C-space [Motion Planning].

 - 35 -

Computer Vision System

3. COMPUTER VISION SYSTEM

3.1 Introduction

 As mentioned in the previous chapter, the review of current literature indicated

that a complete arm imitation robot system needs a sensing technology such as computer

vision device to provide the information to monitor and direct the motion of the object

and manipulator. Three common tasks for computer vision processing are:

1. Detection. The detection of the presence of an object in an image.

2. Tracking. The spatial tracking of a once-acquired object over time.

3. Recognition. Recognition of one of many object types, hence, classification of the

observation in the image into one of many classes.

This chapter outlines a computer vision model that been used to achieve the

purpose of sensing environment. As a computer vision device, the system is able to detect,

analyze and perform further process with the captured object image, for example, human

hand, and base on the characteristic to track the object moves.

3.2 Why a computer vision system

There are few methods available to track an object in the industry, the difference

 - 36 -

Computer Vision System

between them are the sources and properties been used. Depending on the tracking

environment and the need of the end user, following analyses is made.

3.2.1 Magnetic tracking system

Magnetic tracking is the most commonly used technology as an interface to a

virtual world. The technology uses a magnetic field emitting source and relative sensors

to capture the trajectory information of a moving object respect to the origin.

Advantages:

Do not restrict by the line-of-sight

Inexpensive and accurate

Long range detection is possible

High sample rate

However, interferences from the environment which may cause major problems

with a tracker to report object motion. For example, metal in the environment will alter

the magnetic field which gives inaccuracy readings; distance reduces the accuracy of

tracking; filter processing introduces latency in the results which devastating in

interactive visual realty applications.

Magnetic technology is popular because of its robustness and lack of constraints

on user motion, and therefore the systems can track real world objects that have 6 DOF

(Degrees of Freedom) and consequently it allows more realistic interaction with the

virtual environment [Sturman].

3.2.2 Acoustical tracking system

Acoustic trackers use high-frequency sound to triangulate a source within the

work area. System sends out pings from the source (mounted on the moving object)

received by microphones in the environment. Precise placement of the microphones

 - 37 -

Computer Vision System

allows the system to locate the source in space to within a few millimetres.

Advantage:

Generates result accurately and precisely

These kinds of system rely on line-of-sight between the source and the

microphones. They can suffer from acoustic reflections if surrounded by hard walls or

other acoustically reflective surfaces. If multiple acoustic trackers are used together, they

must operate at non-conflicting frequencies [Sturman].

3.2.3 Optical tracking system

Having witnessed the success of web camera applications and the appearance of

high definition digital video cameras, we believe that digital video will soon become a

part of everyday life. Video sequences provide more information about how objects and

scenarios change over time [Wong].

Detection and tracking of a human body is a very complex problem due to the

external factors such as irregular colour, shape, brightness etc. Tracking an object

through an image sequence base typically involves feature of detection in one image to

their new positions in the next. Performing object tracking by using image processing to

find known objects which is low cost, portable and accurate, however, some physical

problems such as occlusion, slow and lighting problem still exist.

Visual cameras can be used as a source to detect and track a moving object. The

principle was using the features of moving object to trigger the sensitisation source of the

camera, thus to achieve the purpose of tracking.

Advantages:

Real time tracking

Accurate

 - 38 -

Computer Vision System

Possible to track multiple objects using multiple cameras

However, camera tracking system is affected with line-of-sight within the

surveillance area, also the image processing time of camera is required, normally two or

more cameras is required to cooperate in a wide area of detection.

3.3 Computer vision module

The camera module chosen for this project is the CMUcam2+ that produced by

Carnage Mellon University. Its primary function is to track and monitor highly

contrasting colour regions. It can also detect motion, provide colour statistics, and

transmit image information to a computer for additional processing.

 CMUcam2+ upgraded from previous generation with ROM and RAM, the

master and slave mode feature which becomes the most important capability to increase

the viable option for the complexity image process of the vision system required by the

project. An inexpensive control board and camera module makes it worth to invest.

Figure 3.1 CMU2+ Camera module

 - 39 -

Computer Vision System

The control board of CMUcam2+ utilises UBICOM SX52 microcontroller that

operate at 75 MHz. This processor is a RISC processor that can operate at 765MIPS. It

has 262 bytes of SRAM and a 4096 word flash programmable EEPROM. The control

board can communicate with master devices through either TTL or RS232 serial port.

The control board is able to control 5 servomotors and also has 4 auxiliary I/O ports.

Figure 3.2 Board layout

OV6620 Omnivision CMOS camera comes along with the control board that

allows simple high-level data to be extracted from the camera’s streaming video. The

camera operating at a refresh rate 50 frames per second which allows the camera plentiful

to achieve the requirement for the project. The module provides analogue video output at

352 x 288 resolution and maximum 176 x 255 onboard resolution. OV6620 also provides

a function to operate under lower resolution 88 x 143 which reduces the pixels for image

algorithms to process, thus allowing more frames per second to be operated. The logic

chips and OV6620 camera module are mounted on a same board which saves a large

amount of communication bandwidth usage, also, it is capable to transmit only the centre

and bounding box (top, bottom, left and right) of the object image instead an entire image

to be sent, hence, reduces the time required for transmitting in robotics projects,

moreover, the master-slave feature will be useful to allow multi-cameras to be linked

 - 40 -

Computer Vision System

together, this setup let a parallel image processing and which improves the ability to track

an object motion in a wide visual environment.

3.4 Colour tracking of computer vision module

The colour space is set default as RGB, but an optional setting YCrCb colour

space is available, where Y is the intensity of the image, Cr is red chrominance and Cb is

blue chrominance. Following are the transformation used by cameras to convert RGB to

YCrCb:

BRGY 11.031.059.0 ++=

)(713.0 YRCr −⋅=

)(564.0 YBCb −⋅=

 [Rosenberg]

The colour sensor has 356 columns and 292 rows of light sensitive cells arrange

on a grid. Each location can detect a single colour: red, green or blue. A red, green and

blue value is used to indicate how much of each channel is mixed into that final colour.

Here is the sensors layout:

B(1,1) G(1,2) B(1,3) G(1,4) B(1,5) G(1,6)…….. B(1,355) G(1,356)

G(2,1) R(2,2) G(2,3) R(2,4) G(2,5) R(2,6)…….. G(2,355) R(2,356)

The module picks up the data from each two rows to generate the output.

B(1,1) G(2,1) R(2,2) G(1,2) B(1,3) G(2,3) R(2,4) G(1,4)…….

B(3,1) G(2,1) R(2,2) G(3,2) B(3,3) G(2,3) R(2,4) G(3,4)…….

 - 41 -

Computer Vision System

The extra green channel helps fill in the grid so that each pixel can be evenly distributed

across the sensor, and that information is also closely to approximates the human eye

which is more sensitive to the colour green. For the purpose of simplification, the

CMUcam2+ ignores the second green value. CMUcam2+ generates the output data as

following:

[R(2,2):G(1,2):B(1,1)] [R(2,4):G(1,4):B(1,3)]

[R(2,2):G(3,2):B(3,1)] [R(2,4):G(3,4):B(3,3)]

[Rosenberg]

However, a limitation of CMOS camera is that the colour channels are between

16 and 240 instead of the full 256 for each colour. This will be a problem when tracking

objects with similar colour, for example, as the tracking value of red chrominance is

defined to maximum, theoretically, the camera should track a red object, but as other

values is set to minimum, that confuse the camera to track an red object and a orange

object.

 (a) (b)

 - 42 -

Computer Vision System

 (c) (d)

 (e)

Figure 3.3 Colour tracking of orange and red by CMU2+ camera

 From above figure, blue rectangle shows the bounding box of the object, and the

red dot represents the centre. Objects in orange and red colour are shown in figure 3.3 (a),

(b), and figure 3.3 (c) and (d) are the individual scene of each object as the red

chrominance is set to maximum and other values in minimum. In figure 3.3 (e), it shows

the camera recognizing two objects in one.

 - 43 -

Computer Vision System

3.5 Image frame differencing

A moving object such as hand is required to be detected and tracked in this

project. In the image point of view, the simplest way to detect the moves of an object is

comparing scene of images. Performing an image differencing from the same or similar

view point by feeding the camera a sequence of images which allows the camera to detect

and isolate the moving object.

Figure 3.4 Image frame differencing

 From above figure, it is not hard to see an object is moving from left hand side to

right hand side, similar to previous section, the blue rectangle represents the boundary

box of the object and green dot means the centre of the moving object.

3.6 Histogram analysis

A histogram graph is normally used to represents frequency and distribution of

input data. For CMU2+ computer vision module, a histogram chart is used to indicate the

frequency of red, green, or blue colour channel in an image. CMU2+ detects colour

intensity value from 16 to 240, and divides them into 28 particular ranges, means that

each particular range interval is 8
28

16240
=

− intensity value. Each bar in the histogram

graph shows the number of pixel been found in that particular colour range, hence, more

 - 44 -

Computer Vision System

values been found in a particular range means many colour were found in that range in an

image.

Figure 3.5 Histogram analysing

 According to above figure 3.5, an orange (red) object is in the scene of image,

thus, following conclusion can be made: colour with high intensity is distributed in right

hand side of the histogram graph, object is detect by the camera with high intensity of red

chrominance, green chrominance and blue chrominance are detected in lower intensity,

 - 45 -

Computer Vision System

although there is no actual object in green or blue colour, however, the colour intensity of

orange (red) object is mixed by the primary colours, and some of them are caused by the

light reflection.

3.7 Control commands

Serial commands are used to communicate with the CMU2+ module, the

parameters format are:

• 1,200 to 115,200 Baud

• 8 Data bits

• 1 Stop bit

• No Parity

• No Flow Control

All commands are sent using visible ASCII characters [Rosenberg].

 Control commands are classified into 11 groups according to the function they

perform, that include camera module commands and system level commands, these may

be employed for internal settings of camera module; colour tracking commands and

image windowing commands, normally these groups of commands are used for

monitoring and tracking moving objects; frame differencing commands, histogram

commands and colour statistics commands are used to analyse images; furthermore,

command groups such as buffer commands and data rate commands are controlling data

transmission, and servo commands and auxiliary I/O commands are utilized to handle

servo motors.

3.8 Space coordinates acquiring

Vector is important properties to state an object in a coordinate system, of course

in a computer vision system. Establishing a vector of coordinates in the camera frame of

 - 46 -

Computer Vision System

its own is the primary task before further measuring application, once the vector of the

camera is obtained a complete space system can be created from the location of the

camera to the object.

Due to the nature of image formation is cause by light reflection and refraction on

an object, light coming directly towards to the camera is not the only source being

recorded into an image, other lighting sources from arbitrary angles are reflected or

refracted, thus, perspective effect is created to visible by the camera. Since the angle of

lighting source is an important factor to establish coordinate vectors and needs to be clear

declared, there are a number of methods can be used to identify it.

Ray tracing is most commonly used in computer graphics. This is a process of

simulating the path of light source travel. This method requires a camera with high

accuracy of lens and photosensitive array, and that is done by measuring thousands of

lighting rays, even though, a small error may cause a large angle error. In general ray

tracing is preformed from the source of light and then terminating in the destination,

however in this case it would begin from the photosensitive array until it had passed

through the lens before terminating.

Look up table possibly is the most accurate and fastest method if doing it

correctly. In order to generate the look up table, the centre pixel of an object is employed.

According to the image viewed by the camera, the centre pixel is measured and assigned

to the vector that created in the viewed image, as above procedure completed, next step is

to repeat above procedure with slightly different location of the object. Since this might

be the most accurate method, however, it needs a lot of time to generate the table with

thousands of measurements which makes it unrealistic.

Simplified model, to create a simplified model of the lens some elements of a

look up table are required however not to near the same extent. A constant ratio exists

between pixel and angle in simplified model, pixel location and vector can be generated

base on this linear relationship, and the ratio of pixel and angle can be measured in a

 - 47 -

Computer Vision System

minimal number. However, inaccuracy will be caused due to the manufacturing process

of lenses which leaves some regions of the lens have no measurement been taken.

3.8.1 System method

 Simplified model is the method chosen to obtain the space vector of the system. A

constant ratio is used to multiply the distance of x and axis to obtain yaw and pitch.

The choice of a constant ratio for pixel to angle is based on the measurement of the slope

of best line fit.

y

 The system space vectors are generated as the position of the object is located. In

the process of space vector creation, location of the camera, pitch and yaw angle of the

camera is taken into account. This process is relatively simple to perform, the pitch and

yaw angles is added together with the camera space. Once the vectors of apex and corner

pixels have been assigned, a Cartesian coordinate vector is created through the sine and

co-sine calculations.

3.9 Object positioning algorithm

3.9.1 Bi-Vector

 Once two vectors have been established the position of the object within the view

image can be found. To obtain the position of the object, a simple assumption that two

vectors will cross at the object can be made. However, due to the extremely low chance

that the vectors will actually meet mathematically, an intersection point which has the

minimum distance to both vectors is prior to define, to find this point two points that have

shortest distance to each vector are needed to predefine by using accustomed calculation

of calculus.

 Each vector can is represented in the form of:

 - 48 -

Computer Vision System

)](),(),[(000 tZZtYYtXX vvv ×+×+×+

Where , and are the coordinates of the camera and , 0X 0Y 0Z vX vY and are the

direction components of the vector, t is a variable that represents the distance of point

from the camera and will be replaced by the variable s for another vector.

vZ

 Following equation describes the distance between any points in the vectors:

)(())()(())()(((101
2

202101
2

202101 tZZsYYtYYsXXtXXD vvvvv ⋅++⋅+−⋅++⋅+−⋅+=

)))(2
202 sZZ v ⋅+−

 A simplify equation from above can be obtained in the purpose to find a minimum

distance between two points in further progress by leaving out the square root, which

gives that:

)(())()(())()((101
2

202101
2

202101 tZZsYYtYYsXXtXXD vvvvv ⋅++⋅+−⋅++⋅+−⋅+=

2
202))(sZZ v ⋅+−

Equations
dt
dD and

ds
dD can be obtained from above, that gives the slope of distance

function between two points, depends on which vector is primary to look at.

 Since there is only one closest point to two vectors, above equations will only

have one single minimum value, hence, by equating both equations to zero with two

variables t and s which allows solving both variables simultaneously.

 Once t and s have been solved, a closest point of each vector can be found by

substituting t and s into original vector equation, by averaging these two points

dimensionally which gives the final point and that can be logically considered as the

centre of the object.

 - 49 -

Computer Vision System

 Through a few of practical tests, above algorithm can be performed perfectly as

two vectors are crossed with each other, but in fact two cases are excepted which may

cause problems, if two vectors are exactly parallel or inaccuracies measurement are

occurred.

Figure 3.6 Exaggerated problem

However, the equations been used for vector calculation are fractions, that gives an

opportunity to discover if the denominator equals to zero is occurred (vectors are parallel),

then zero errors can be prevented in runtime division without the need for performing a

dot product multiplication to find the angle between them.

3.9.2 Perspective

 A simple thought can be made after previous discussion, bi-vector approach is

more accurate than using a single camera and convert the object viewed into

quantification values, these values are used in equations of vector calculation to produce

a point which can be used as the centre of the object. In order to be more perceptive with

 - 50 -

Computer Vision System

changes of the viewed object the size of the object is required before a distance can be

obtained.

 Although there are inaccuracies existing in a single camera approach find the

location of the object, however, it is worth to perform this algorithm in the purpose of

making sure that the performance of bi-vector is correct.

 The algorithm for obtaining the distance of an object from the viewed size is

showing below:

=D RealRadius / tan-1 (ViewedRadius × C)

Where:

D is the distance from the camera.

RealDiameter is the size of the object.

ViewedRadius is the distance from the centre of the object to the top, bottom, left or right

of the object in pixels.

C is the pixel to angle ratio for the either the X or Y axis depending on whether the axis

being used for used for ViewedRadius.

 It is possible to perform the algorithm a number of times with different radius

measurements, an improvement of performance would be expected by taking an average

calculation with these distances.

3.9.3 Methods combination

 A cooperation of bi-vector and perspective methods is likely achievable, the

perception method is only uses as when one camera has lost track of the object but the

other one still has it. By creating a set of functions that are able to estimate the error of

both methods, a confidence value can be assigned to each position of bi-vector and two

perspective based locations, these values could then be normalized to create weighting

 - 51 -

Computer Vision System

values. The three locations could then be multiplied by the corresponding weighting

value, before being added together to generate the final position. While this synergy is

not yet in place it would be expected to be relatively straight forward to implement,

however tuning of the confidence functions could be quite difficult to achieve such that

results are reliable. The basis for confidence of the bi-vector method could be expected to

be relative to the angle between.

 The reacquisition algorithm can be done by taking the position of the camera

which has lost the track of the object and the position of the object can be found by

performing the perspective method of the other camera. Once a vector has been generated

it is then transformed into pitch and yaw values by simply using ATan2 and Pythagoras’

theorem.

3.10 Computer vision module interacting with human hands

Human visual system has the ability to detect hands in arbitrary environment and

situation. It is crucial that a hand is acted as a mechanism input to a computer which is

robust and reliably to detect an object in front of different backgrounds because all

further stages and functionality depends on it.

Detection of a colour object such as colour glove which can be achieved in very

high detection rates despite low false positive rates. Most of the hand detection method

resort to less object-specific approaches and instead utilize colour information, and

sometimes combine the technique of motion flow, background differencing and position

priors. A reliable detection without constraints must employ as much information

available in the image.

Tracking hands is extremely difficult because they can move very fast and the

appearance can change within a few frames. Due to the difficulty of tracking with the

appearance of hands, colour information or background differencing technique may be

 - 52 -

Computer Vision System

used to obtain colour segmentation and which can produce good result on tracking

objects.

 Recognising a hand configuration is very difficulty and largely unsolved problem

due to different appearance, habits and physical conditions. Traditional methods based on

edge detection can achieve fairly good result, but even though an extensive processing is

required [Chen].

 - 53 -

Arm Manipulation System

4. ARM MANIPULATION SYSTEM

4.1 Introduction

 An actuator normally has an energy input and a mechanical output such as

displacement, velocity or force, and controlled by different kinds of auxiliary energies,

for example, electrical, pneumatic or hydraulic supplies. This chapter describes in detail

of a robot arm manipulator that has been chosen to act like human being. The arm

manipulator uses signals from the object detected by the camera, the position signal

converts to the robot control signal which drives the DC servo motors that leads the end

effector to the desire position.

4.2 Arm manipulator specification

 The arm manipulator chosen for this project is the Movemaster RV-M1 industrial

programmable micro-robot system produced by Mitsubishi. Its primary function is to

move to the desire position according to the information or command received,

furthermore, it is able to perform some simple tasks with the end effector that instructed

by the user.

 RV-M1 is a standard 5-joints or 5 degrees of freedom arm manipulator which is

obvious to see in an industrial environment. It is consisting of waist pitch and wrist roll

just like a human arm.

 - 54 -

Arm Manipulation System

Figure 4.1 RV-M1 Movemaster arm manipulator

 RV-M1 Movemaster is an arm manipulator that manufactured in 300mm height

with upper arm 250mm and fore arm 160mm, which has similar length compares to the

limb of human arm.

Figure 4.2 Dimensions of RV-M1

 - 55 -

Arm Manipulation System

4.3 Drive unit and interfacing

 The drive unit is the core of the robot system. Main CPU, RAM/EPROM memory

and other electronic components are all located within drive unit, and also, it is a

connection interface between robot to a PC and robot to a teaching box. In the front panel

of the drive unit, there are switch buttons of emergency stop, program start and stop, and

manual reset along with execute and error indicators which capable the users to observe

the states of robot arm operation. Three sets of DIP switches are provided to set the baud

rate and define positions in the Cartesian coordinate system. Heat sinks and ventilation

openings are at the back of the drive unit, which allows protecting over heat that occurs

to the circuitry.

 Due to the operation requirement of the user, RV-M1 Movemaster offers a variety

of interfacing options. It can be interfaced to a personal computer or a teaching box or to

an external device such as microcontroller. According to the project requirement, an

interface between Movemaster to a personal computer is considered. The drive unit

makes two types of interfaces available for the link between Movemaster and a personal

computer. These are the Centronics interface and the RS232 interface. The Centronics

interface is a standard parallel transmission that establishes a very fast transmission speed,

however, since Centronics interface is originally used in data transmission between a

personal computer and a printer, according to that, the movemaster plays the same role as

a printer, which means the communication is performed in one direction from personal

computer to the robot only, and this kind of interface is restricted from the distances of 1

or 2 meters. RS232 is a common type of interface for data communication in the industry.

Since data are sent through a single channel, it will cause a longer transmission time

under a low transmission baud rate compare to parallel transmission. Instead, it is

advantage in bidirectional data transfer that makes the personal computer capable of

reading data from the robot, and moreover, serial communication also allows a longer

transmission distance of 3 to 15 meters.

 - 56 -

Arm Manipulation System

4.4 Operation space

 RV-M1 has five joints driving by five DC servo motors individually, and each of

them has their own operating range.

Joints Motor Range

Joint 1 Waist °300

Joint 2 Shoulder °130

Joint 3 Elbow °110

Joint 4 Wrist Pitch °± 90

Joint 5 Wrist Roll °±180

Figure 4.3 Operating range

 - 57 -

Arm Manipulation System

 According to above specification, an overall system operating space of RV-M1

Movemaster can be imagined.

Figure 4.4 System operating space

 The operating space is important in an arm manipulation system, not only because

of the safety reason to the environment, but also, the drive unit will give an error message

as the end effector moves to a position beyond the operating space, this will effect on the

controlling and motion planning of the arm manipulator.

4.5 Control and commands

 There are few ways to control the Movemaster arm actuator, according to how the

commands been executed, control modes can be grouped as follow:

1. Direct Execution Mode:

Control commands are used to move the robot directly. They are not executing in a

form of program, instead, the commands are sent to the drive unit one at a time

 - 58 -

Arm Manipulation System

sequentially. An example below is showing how to use a simple command “MO” to

control the Movamaster to a pre-defined position through RS232 interfacing.

MO 10

By executing above command which leads the Movemaster to the pre-defined

position 10.

2. Program Execution Mode:

Movemaster provides a space for users to program arm motion using EPROM

memory locations. The program will transfer to drive unit for processing, as the

program been transferred, the command “RN” starts the arm motion.

10 NT (Reset origin)

 20 SP 9 (Set speed to 9)

 30 MO 1 (Go to position 1)

 40 MO 2 (Go to position 2)

 50 TI 20 (Wait for 2 seconds)

 60 GT 30 (Go to memory location 30)

 70 ED (End program)

 RN (Start the program)

3. Drive Unit Mode:

This mode allows users to store program in the EPROM or RAM in the drive unit and

execute by using the front panel start, stop and reset switches.

 A handy tool teaching box is another option to control the Movemaster robot.

Teaching box is mainly use for defining, checking and correcting positions of the robot

arm. The teaching box can perform the following functions:

1. Reset the arm to home position

 - 59 -

Arm Manipulation System

2. Define a position of the arm, particular in X,Y and Z coordinates

3. Move the arm to a pre-defined position.

4. Move the arm to any point in the Cartesian plane

5. Set the tool length

6. Open or Close the gripper

7. Emergency stop

 The commands of Movemaster can be divided into 6 groups according to the

functions they perform, they are:

1. Position and motion control instructions

2. Program control instructions

3. Hand control instructions

4. I/O control instructions

5. RS2232C read instructions

6. Miscellaneous

Position and motion control instructions are mainly used in this project, some

descriptions and example of useful commands are given below:

1. HO (Home):

A Cartesian coordinate system home position can be set by executing the HO

command, and any consequent motion commands are executed under this reference

coordinates, as the home reference position is set, it also can be accessed by executing

OG command.

2. HE (Here):

This command assigns a position number with current coordinates.

10 MP 0, 350, 200, -60, 20 (Moves to the position of 0=X , 350=Y , with

pitch angle and roll angle

200=Z

°−= 60 °= 20)

 - 60 -

Arm Manipulation System

20 HE 15 (Set above coordinate to position 15)

3. PD (Position Define):

This command defines a Cartesian coordinate to a position number with pitch and roll

angle.

10 PD 15, 0, 350, 200, -60, 20 (Defines coordinate 0=X , 350=Y , with

pitch angle and roll angle

200=Z

°−= 60 °= 20 to position number 15)

The format of the command is PD (position number), (X coordinate), (Y coordinate),

(Z coordinate), (pitch angle), (roll angle).

4. MO (Move):

This command lead the hand to the position defined by the command HE or PD.

10 MO 15 (Moves the hand to defined position 15)

5. MP (Move Position):

This command can move the hand to a specified coordinate position with pitch and

roll angle directly.

10 MP 0, 350, 200, -60, 20 (Moves to the position of 0=X , 350=Y , with

pitch angle and roll angle

200=Z

°−= 60 °= 20)

The format of the command is MP (X coordinate), (Y coordinate), (Z coordinate),

(pitch angle), (roll angle).

6. MJ (Move Joint):

This command turns each joint of the arm to the specified angle from the current

position.

10 MJ +30, 0, 0, 0, 0 (Turns waist joint 30° in positive direction)

20 MJ 0, -30, 0, 0, 0 (Turns shoulder joint 30° in negative direction)

 - 61 -

Arm Manipulation System

The format of the command is MJ (waist angle), (shoulder angle), (elbow angle),

(pitch angle), (roll angle).

7. OG (Origin):

This command brings arm back to the origin reference position which sets by the HO

command.

Above commands are most frequently used in the project, a proper use of other groups of

commands may help to make the control motion more efficient, smoother and faster.

 - 62 -

Overall Operating System

5. OVERALL OPERATING SYSTEM

5.1 Introduction

 The details of computer vision and robot arm manipulator have been discussed in

previous chapters. These two systems are now going to combine into an overall vision

and motion system. Visual Basic 6 was chosen to develop the Graphic User Interfaces

(GUIs) for the computer vision system and robot arm manipulator. Colour specification

of the moving object (hand) was required for the computer vision system to start

detecting, and an open space was necessary for the arm manipulator to avoid collision

occurs.

5.2 GUI of computer vision system

 - 63 -

Overall Operating System

Figure 5.1 GUI of computer vision system

 Figure 5.1 shows the GUI of the computer vision system, it was established in the

purpose to obtain the location of a specific object in Cartesian coordinate system. The

first part of GUI was designed to set the position of the camera in X, Y, Z direction away

from the static object. Boxes under camera location setting was used to adjust the

resolution (how wide is a pixel contain) of the camera in X, Y direction. At the bottom

the GUI shows the result of detection in Cartesian coordinate system. Three buttons on

the right hand side were used to start or stop recoding coordinates into database, or the

yellow button could be used to delete the coordinates which saved in database. The

control button at the bottom allows the user to monitor the states of arm manipulator GUI.

 A database was constructed using Microsoft Access and operates as a buffer

which holds the data for further calculation process. Coordinates data are recorded to

database in every 4000us approximately (can be adjusted in the computer vision

 - 64 -

Overall Operating System

program), since the camera system is very sensitive and the data recorded are in high

accuracy relatively, an experiment shows that if data input directly into arm manipulator

control which will cause an arm movement in a correct direction but low stability.

Following data were recorded by the computer vision system as the user wearing a

specific colour glove.

Figure 5.2 Specific colour glove

Traj_x (mm) Traj_y (mm) Traj_z (mm) Traj_x (mm) Traj_y (mm) Traj_z (mm)

-196.6257912 353.1520975 79.6500964 16.0815434 348.0790454 77.4656587

-196.5464621 351.6753545 77.1484598 21.5274682 344.8231095 74.2654654

-196.7654191 356.5464327 79.5724236 29.3541087 346.6559354 77.0977462

-196.3246879 358.9765442 78.0982457 40.2644680 343.4565858 75.2564460

-214.1725411 356.0560064 82.6582689 54.3568652 345.9785139 78.6484339

-205.6451759 353.0968455 81.3551754 65.0785213 344.5668579 79.6553526

-206.7144747 350.2643654 82.0980894 77.7854234 344.1238603 79.8643544

-211.6654715 353.4721809 83.4644352 86.2548358 341.5617878 77.5476868

-203.9578540 357.4167678 84.5721465 94.1256707 344.2549873 79.8448234

-200.0986597 356.7549408 83.7699846 99.5676121 344.9786879 79.2408003

-186.5086513 356.4091501 82.2165489 104.6545124 344.1389755 79.8654430

-173.6250924 354.9176795 81.9546231 110.5478087 340.0659568 78.6571423

-163.6897652 354.4356457 79.3674915 121.0986548 340.4664254 78.8745625

-148.9815860 353.7653452 79.7531598 129.5407809 340.6970786 78.7645451

-142.5897918 355.9019874 81.2314658 143.2316549 340.8461232 78.8745245

 - 65 -

Overall Operating System

-130.6986439 354.5379781 79.5642318 158.0678913 343.3278619 81.9645001

-124.7289953 356.3547648 82.6459872 168.5431098 343.4698757 81.0980398

-115.4468464 352.7409789 80.4861432 173.3217935 341.3426544 79.8907132

-102.8091239 351.5978543 77.3197870 182.7519598 340.5978709 77.8345340

-98.7626860 351.3568435 77.8965423 190.5982752 339.3757094 77.6970253

-89.1369813 351.1981597 78.4756645 196.8912567 343.7134207 80.9056754

-82.0981516 350.1898438 78.1237588 201.5845932 341.5089840 78.5978054

-72.3982358 349.8966556 78.3249908 209.7506843 340.1680065 77.9760534

-61.6076079 349.5315653 77.1236547 216.4265168 342.8396700 79.7874214

-52.1093850 348.2435656 76.8671284 218.0288215 338.3205082 77.8720342

-50.5123093 350.6543348 77.9807584 234.4523456 340.7060507 79.5056607

-43.8759764 351.2354640 77.3589845 241.7812876 338.2359781 76.9780636

-33.3572608 347.5408297 76.6546453 255.2350978 336.0604657 77.1325010

-24.2659477 347.7654253 75.8094509 255.5795498 334.3607808 78.0895065

-17.3652378 347.0273567 76.5378721 255.6757653 337.2456842 79.3469087

-7.6954243 346.3296708 75.5897545 260.4731275 340.3540528 80.7890460

-2.9765424 348.5615487 77.0854515 260.5443665 337.5568099 80.9803570

8.1609324 346.6526576 77.3654789

Table 5.1 Trajectories recorded in database

Figure 5.3 Trajectory of object move by inputting coordinates directly

 - 66 -

Overall Operating System

Therefore, an advance data process is required to implement before input to the arm

manipulator, this can be achieved by performing mathematic average algorithm to the

data recorded. The average algorithm is calculated every three X, Y, Z coordinates

repeatedly under following regulation:

first X, Y, Z averaged coordinate:

[] -196.6
3

191)(-196.76541)196.546462()6257912.196(
=

+−+−

[] 8.353
3

27)(356.546435)351.675354()5353.152097(
=

++

[] 8.78
3

6)(79.572423)77.1484598()79.6500964(
=

++

second X, Y, Z averaged coordinate:

[] -196.5
3

879)(-196.3246191)(-196.76541)196.546462(
=

++−

[] 7.355
3

)2358.976544(27)(356.546435)351.675354(
=

++

[] 3.78
3

7)(78.0982456)(79.572423)77.1484598(
=

++

third X, Y, Z averaged coordinate:

[] -202.4
3

411)(-214.1725879)(-196.3246191)(-196.7654
=

++

[] 2.357
3

)4356.056006()2358.976544(27)(356.54643
=

++

[] 1.80
3

9)(82.6582687)(78.0982456)(79.572423
=

++

and so on…

Traj_x Avg (mm) Traj_y Avg (mm) Traj_z Avg (mm) Traj_x Avg (mm) Traj_y Avg (mm) Traj_z Avg (mm)

-196.6 353.8 78.8 15.3 346.5 76.4

-196.5 355.7 78.3 22.3 346.5 76.3

 - 67 -

Overall Operating System

-202.4 357.2 80.1 30.4 345.0 75.5

-205.4 356.0 80.7 41.3 345.4 77.0

-208.8 353.1 82.0 53.2 344.7 77.9

-208.0 352.3 82.3 65.7 344.9 79.4

-207.4 353.7 83.4 76.4 343.4 79.0

-205.2 355.9 83.9 86.1 343.3 79.1

-196.9 356.9 83.5 93.3 343.6 78.9

-186.7 356.0 82.6 99.4 344.5 79.7

-174.6 355.3 81.2 104.9 343.1 79.3

-162.1 354.4 80.4 112.1 341.6 79.1

-151.8 354.7 80.1 120.4 340.4 78.8

-140.8 354.7 80.2 131.3 340.7 78.8

-132.7 355.6 81.1 143.6 341.6 79.9

-123.6 354.5 80.9 156.6 342.5 80.6

-114.3 353.6 80.2 166.6 342.7 81.0

-105.7 351.9 78.6 174.9 341.8 79.6

-96.9 351.4 77.9 182.2 340.4 78.5

-90.0 350.9 78.2 190.1 341.2 78.8

-81.2 350.4 78.3 196.4 341.5 79.1

-72.0 349.9 77.9 202.7 341.8 79.2

-62.0 349.2 77.4 209.3 341.5 78.8

-54.7 349.5 77.3 214.7 340.4 78.5

-48.8 350.0 77.4 223.0 340.6 79.1

-42.6 349.8 77.3 231.4 339.1 78.1

-33.8 348.8 76.6 243.8 338.3 77.9

-25.0 347.4 76.3 250.9 336.2 77.4

-16.4 347.0 76.0 255.5 335.9 78.2

-9.3 347.3 76.4 257.2 337.3 79.4

-0.8 347.2 76.7 258.9 338.4 80.4

7.1 347.8 77.3

Table 5.2 Average of object trajectories

Average results are taken in one decimal place because the smallest input to the arm

manipulator is 0.1mm.

 - 68 -

Overall Operating System

Figure 5.4 Object trajectory by inputting averaged coordinates

5.3 GUI of arm manipulator

Figure 5.5 GUI of robot arm manipulator

 - 69 -

Overall Operating System

 The GUI was designed to communicate between user and arm manipulator.

Control buttons at right hand side were used to control arm manipulator manually, each

time the user press the X, Y, Z, Pitch or Roll button which cause the arm moves in

positive or negative direction. Gripper open or close button simply control the end-

effector open or close. Command field allows the user to input command directly, that’s

the space where the averaged object coordinates to be entered for directing the arm

manipulator to the same spot, and through the operation command MP (move to position)

is employed.

°10

5.4 System flowchart

 There is a system flowchart underneath which helps to understand the overall

operation of the catch and move system.

 - 70 -

Overall Operating System

Figure 5.6 System flowchart

Based on the above system flowchart, a brief description can be made as follows, the

computer vision system is used to detect and record the actual position of hand movement,

the arm manipulator responds to the computer vision system data input by moving arm

manipulator with desired motion trajectories.

5.5 Testing on the system

 Based on section 5.2, averaged coordinates were entered the arm manipulator

control system and drove to perform following movements.

Detecting object
with specific color

Perform Bi-Vector
calculation

Camera 1 Camera 2

Program start

Record detected
coordinates to database

Averaging coordinates
for stable input

Arm manipulator
control input

Arm manipulator moves
to desire position

 - 71 -

Overall Operating System

 - 72 -

Overall Operating System

Figure 5.7 Actual robot arm movement

 (a) (b)

 (c) (d)

 - 73 -

Overall Operating System

(e)

Figure 5.8 Arm manipulator movements with coordinates (a) X=258.9, Y=338.4, Z= 80.4

(b) X=104.9, Y=343.1, Z=79.3 (c) X=-0.8, Y=347.2, Z=76.7 (d) X=-105.7,

Y=351.9, Z=78.6 (e) X=-196.6, Y=353.8, Z=78.8

 In order to compare and proof the arm manipulator moved in the right motion

planned, experimenter let the arm manipulator wear the specific glove as it moved and

took record of the trajectories.

Figure 5.9 Arm manipulator with glove on

The results are as follow:

 - 74 -

Overall Operating System

Traj_x (mm) Traj_y (mm) Traj_z (mm) Traj_x (mm) Traj_y (mm) Traj_z (mm)

-270.7616 249.0490 105.6635 -20.4828 284.7370 113.0677

-270.6909 250.3724 105.5459 -2.9699 286.4318 113.1202

-270.4678 247.0006 105.4549 -2.9653 286.2430 113.1087

-268.3447 249.3378 106.1365 -2.7753 285.6685 113.2270

-244.5078 249.3089 103.6759 20.6108 275.5516 113.0337

-244.9202 248.9794 104.2172 18.9307 275.0720 112.0794

-244.3828 247.5810 103.9602 20.6686 277.7750 113.0483

-236.5441 231.8936 104.4806 39.7000 279.9718 113.0969

-236.2375 249.7596 104.5671 53.0302 278.0189 112.7403

-234.5927 250.9905 103.7885 53.5621 276.5252 112.1918

-209.8575 252.0206 103.8966 52.8685 280.6923 114.1719

-193.2059 254.7262 105.6232 101.7331 275.4364 110.9038

-194.5164 256.3792 106.5618 101.5173 274.2080 110.7106

-152.4859 261.9374 107.4397 99.6259 273.1102 109.9003

-152.7348 262.7147 107.0697 112.0322 273.1791 110.4724

-152.1442 264.0807 107.6630 112.8589 272.0702 110.1362

-146.5442 265.1998 106.4543 112.9854 273.8810 110.2790

-119.5384 273.4759 108.8540 144.3231 268.8512 108.5351

-119.6010 273.9056 109.1897 146.7945 267.7565 109.4971

-119.4031 274.4802 109.2142 144.6441 267.5958 108.7161

-67.6246 280.2641 112.4015 168.6161 265.5074 108.5207

-67.5883 279.4503 112.3171 167.5374 265.3242 108.2041

-67.6519 282.5188 112.4875 169.3055 264.9541 108.7997

-46.1506 275.1281 111.3524 198.0938 262.7926 108.2500

-46.4172 273.4610 111.1617 199.4611 264.1771 108.4673

-44.2473 276.8786 112.8289 201.5499 264.2985 109.0973

202.1156 266.5921 109.2716 273.7539 271.3067 111.8065

236.0436 267.6114 108.5183 307.5828 281.5151 118.9684

236.1523 266.6645 108.6023 306.6531 282.9948 118.7363

236.0895 267.5007 108.5413 307.0196 281.9377 118.8996

267.1439 270.4856 109.9614 306.7317 283.1106 118.7710

264.4425 270.5452 109.3802 307.0728 282.8774 118.9225

264.2668 270.0506 109.5328 355.2692 294.2481 129.3241

272.7039 270.8961 111.5561 355.7916 290.8316 129.5381

273.9088 271.2450 111.8521 355.2572 292.6641 129.3319

 - 75 -

Overall Operating System

273.3027 270.5752 111.7367

Table 5.3 Arm manipulator trajectories

plot of trajectories is shown below:

Figure 5.10 Trajectories of arm manipulator move

Spurs can be observed from the above figure, this means that there were vibrations while

the arm was moving, and this was caused by the start and stop moving of arm

manipulator. Furthermore, the figure above also showed different scale of Y-axis and Z-

axis, this is because the arm manipulator was moving in different height and distance

from the camera compare to human. As we adjusted the scale of the plot to the similar

range of human hand, the plot can be obtained as follow, and spurs can be eliminated by

averaging input trajectories:

 - 76 -

Overall Operating System

Figure 5.11 Trajectories of arm manipulator after averaging

Comparing two figures with each other, although they are not matching perfectly but an

acceptable tolerance is considered.

 - 77 -

Conclusion

6. CONCLUSION

 The aim of project was to create a system which can locate and track an object

(hand) in a three dimensional space, and using an arm manipulator to imitate hand motion

base on a positioning vision system.

 It has been shown that a computer vision system would be the best choice to

achieve the goal due to cost, accuracy or complexity. Two cameras were used to locate

the object in a wide field of view, image processing on frames were performed to fetch

enough information to acquire accurate coordinates of a specific object. Few methods

have been tested in order to make the object to be seen by the camera easily. Beacon

lighting would be a reasonable option, but the wires connection may limit the moves of

the object. Since the cameras are operating under colour base, a specific colour glove can

be considered as wireless equipment and easy to distinguish from the background colour.

 A database was established to record the trajectories of the object been through,

these trajectories data were averaged by a mathematical algorithm in the purpose of

giving a stable input to the arm manipulator, the more data average been taken the more

smooth of the arm manipulator move.

 A 3D 6-DOF Movemaster was employed to imitate the motion of the object. The

physical structure and operating space are the two major properties as choosing a suitable

 - 78 -

Conclusion

manipulator. According to the data entered to the controller, Movemaster responded with

a human-liked motion.

 - 79 -

Discussion And Further Improvement

7. DISCUSSION AND FURTHER IMPROVEMENT

 As expected a number of problems occurred during the project process, and some

suggestion can be made for further system improvement.

 The Movemaster is operating properly within its workspace, however the

computer vision system only locates the object coordinates in X, Y, Z axes. Since the

Movemaster is a 6-DOF arm manipulator, few coordinates input by computer vision

system are unreachable due to the angle of pitch and roll, this makes the Movemaster

showing an unrealistic wrist shape and returns an error message to the drive unit which

forces the system stop executing commands afterwards. This problem can be solved by

resetting the system manually to disregard the coordinate, or a limitation can be set to

avoid the hand moves into that inaccessible area. Alternatively, extra sensors can be

attached on the wrist to detect the pitch and roll angle, regrettably an additional cost for

the device with complicated measuring algorithm is needed.

 Hands are the primary apparatus for human to perform tasks. Most robot arms are

not just designed to move but also get some tasks done, and Movemaster is one of them.

It comes along with an end gripper which allows the arm manipulator to perform some

task. At this stage, the vision system records the hand trajectories and makes the

Movemaster to imitate human motion, if an additional click button is attached on the

glove for gripper open/close control, the Movemaster will not just a human motion

imitator and also a task finisher.

 - 80 -

Discussion And Further Improvement

 In 21st century, the internet has become part of everyday life. Internet service is

not just a communication tool between human, it also can be used to transmit data from

human to machine. In other words, remote control becomes feasible to the user and

human can be replaced in some critical environment and get the task done.

 - 81 -

References

REFERENCES

[Bhanu] Bhanu, B., & Pavlidis, I. (Eds.). (2005). Computer vision

beyond the visible spectrum. London: Springer.

[Bicchi] Bicchi, A., & Christensen, H. I., & Prattichizzo, D. (Eds.).

(2003). Control problems in robotics. New York: Springer.

[Chang] Chang, I. C., & Huang, C. L. (1996). IEEE proceedings of

ICPR ’96. Ribbon-based motion analysis of human body

movements, 436-440.

[Chen] Chen, C. H., & Wang, P. S. P. (2005). Handbook of pattern

recognition and computer vision. London: World scientific

Publishing.

[Choset] Choset, H., & Lynch, K. M., & Hutchinson, S., & Kantor,

G., & Burgard, W., & Kavraki, L. E., & Thrun, S. (2004).

Principles of robot motion. England: MIT press.

[CSS] Computer System Support. (2008). Robot Arm Workspace.

Retrieved from:

 - 82 -

http://kea.massey.ac.nz/patroninfo~S1/1290439/patframe2&1843841/search~S1/aPavlidis%2C+Ioannis%2C+1961-/apavlidis+ioannis+1961/-3,-1,0,B/browse
http://kea.massey.ac.nz/patroninfo~S1/1290439/patframe2&1810928/search~S1/aPrattichizzo%2C+Domenico%2C+1965-/aprattichizzo+domenico+1965/-3,-1,0,B/browse

References

http://www.engineering.uiowa.edu/~sicei/public_html.ic41/

rts.html

[Forsyth] Forsyth, D. A., & Mundy, J. L., & Gesu, V., & Cipolla, R.

(Eds.). (1999). Shape, contour and grouping in computer

vision. New York: Springer.

[Gonzalez] Gonzalez, R. C., & Woods, R. E. (2002). Digital image

processing. New Jersey: Prentice Hall.

[Harris] Harris, L. R., & Jenkin, M. R. M. (2007). Computational

vision in neural and machine systems. Cambridge:

Cambridge University Press.

[Hartly] Hartley, R., & Zisserman, A. (2003). Multiple view

geometry in computer vision. Cambridge: Cambridge

University Press.

[Heijden] Heijden, F. (1994). Image based measurement systems.

England: John Wiley & Sons.

[Hugh] Hugh, J. (2001). Mitsubishi RV-M1 Manipulator. Retrieved

April 23, from:

http://www.eod.gvsu.edu/eod/mechtron/mechtron-428.html

[Isler] Isler, V., & Khanna, S., & Spletzer, J., & Taylor, C. J.

(2005). Computer vision and image understanding. Target

tracking with distributed sensors: the focus of attention

problems, 100, 225-247.

[Koller] Koller, D., & Klinker, G., & Rose, E., & Breen, D., &

 - 83 -

References

Whitaker, R., & Tuceryan, M. (1997). In Proceedings of

the Symposium on Virtual Reality Software and

Technology. Real-time Vision-Based Camera Tracking for

Augmented Reality Applications, Sep 15-17, 87-94.

[Liu] Liu, J. X. (2005). Computer vision and robotics. New York:

Nova Science.

[Liu] Liu, J. X. (2005). Mobile robots: new research. New York:

Nova Science.

[Lumelsky] Lumelsky, V. J. (2006). Sensing, intelligence, motion: how

robots and humans move in an unstructured world. New

Jersey: John Wiley & Sons.

[Macaire] Macaire, L., & Vandenbroucke, N., & Postaire, J. (2006).

Computer vision and image understanding. Color image

segmentation by analysis of subset connectedness and color

homogeneity properties, 102, 105-116.

[Medioni] Medioni, G., & Kang, S. B. (2004). Emerging topics in

computer vision. New Jersey: Prentice Hall.

[Motion Planning] Isto, P. (2003). Motion planning. Retrieved April 30, 2007,

from:

 http://www.cs.hut.fi/~evp/Res/MP/motion_planning.html

[Multi Object Tracking] IEEE Workshop. (2001). Multi-object tracking. Retrieved

June 7, 2007, from:

 http://research.microsoft.com/workshops/MultiObjectTrack

ing/

 - 84 -

References

[Parker] Parker, J. R. (1997). Algorithms for image processing and

computer vision. New York: Wiley Computer Publishing.

[Robot Arm Tutorial] Society Of Robots. (2005). Robot arm tutorial. Retrieved

May 7, 2007, from:

 http://www.societyofrobots.com/robot_arm_tutorial.shtml

[Rosenberg] Rosenberg, C., & Nourbakhsh, I. (2003). CMUCam2

manual. U.S.A.: Anthony Rowe and Carnegie Mellon

University.

[RRG] Pickle, J. J. (2003). Robot workspace. Retrieved May 10,

2007, from:

 http://www.robotics.utexas.edu/rrg/learn_more/low_ed/wor

kspaces/

[Sarfraz] Sarfraz, M. (2005). Computer-aided intelligent recognition

techniques and applications. England: John Wiley & Sons.

[Sebe] Sebe, N., & Lew, M. S. (2003). Robust computer vision:

theory and applications. Netherland: Kluwer Academic.

[Sebe] Sebe, N., & Lew, M. S., & Huang, T. S. (Eds.). (2004).

Computer vision in human-computer interaction. New

York: Springer.

[Sonka] Sonka, M., & Hlavac, V., & Boyle, R. (2008). Image

processing, analysis, and machine vision. Toronto:

Thomson Learning.

 - 85 -

References

[Sturman] Sturman, D. J., & Zeltzer, D. (1994). IEEE computer

graphics and applications. A survey of glove-based input,

30-39.

[Wong] Wong, K. Y., & Spetsakis, M. E. (2006). Computer vision

and image understanding. Tracking based motion

segmentation under relaxed statistical assumptions, 104,

45-64.

[Wechsler] Wechsler, H. (2007). Reliable face recognition methods:

system design, implementation and evaluation. New York:

Springer.

[Zhang] Zhang, Y. J. (2006). Advances in image and video

segmentation. U.S.A.: IRM Press.

 - 86 -

Appendixes

Appendix A

Object Tracking System

GUI

 - 87 -

Appendixes

Main GUI

Public Cam1 As New frmCam
Public Cam2 As New frmCam
Dim interval_i As Integer

''*********Dim start**************
Dim dbs_cd As Database
Dim db_cd As String
Dim table_cd As String
Dim rst_cd As Recordset
Dim stop_f As Boolean
''*********Dim start**************

Private viewRadius As Double

Private Function GetBiVectorCoords() As D3DVECTOR

 Dim t As Double
 Dim t2 As Double
 Dim s As Double
 Dim s2 As Double

 Dim X As Double
 Dim Y As Double
 Dim z As Double

 t2 = (Cam2.TraceX ^ 2 * Cam1.TraceY ^ 2 + Cam2.TraceX ^ 2 * Cam1.TraceZ ^ 2 - 2
* Cam2.TraceX * Cam2.TraceY * Cam1.TraceY * Cam1.TraceX - 2 * Cam2.TraceX *
Cam2.TraceZ * Cam1.TraceZ * Cam1.TraceX + Cam2.TraceY ^ 2 * Cam1.TraceX ^ 2 +
Cam2.TraceY ^ 2 * Cam1.TraceZ ^ 2 - 2 * Cam2.TraceY * Cam2.TraceZ *
Cam1.TraceZ * Cam1.TraceY + Cam2.TraceZ ^ 2 * Cam1.TraceX ^ 2 + Cam2.TraceZ ^
2 * Cam1.TraceY ^ 2)
 s2 = (Cam1.TraceX ^ 2 + Cam1.TraceY ^ 2 + Cam1.TraceZ ^ 2)

 If (t2 = 0) Or (s2 = 0) Then _
 Exit Function

 t = (Cam2.TraceX * Cam1.LocationX * Cam1.TraceY ^ 2 + Cam2.TraceX *
Cam1.LocationX * Cam1.TraceZ ^ 2 - Cam2.TraceX * Cam1.TraceX * Cam1.TraceY *
Cam1.LocationY + Cam2.TraceX * Cam1.TraceX * Cam1.TraceY * Cam2.LocationY -
Cam2.TraceX * Cam1.TraceX * Cam1.TraceZ * Cam1.LocationZ + Cam2.TraceX *
Cam1.TraceX * Cam1.TraceZ * Cam2.LocationZ - Cam2.TraceX * Cam2.LocationX *
Cam1.TraceY ^ 2 - Cam2.TraceX * Cam2.LocationX * Cam1.TraceZ ^ 2 +

 - 88 -

Appendixes

Cam2.TraceY * Cam1.LocationY * Cam1.TraceX ^ 2 + Cam2.TraceY *
Cam1.LocationY * Cam1.TraceZ ^ 2 - Cam2.TraceY * Cam1.TraceY * Cam1.TraceX *
Cam1.LocationX + Cam2.TraceY * Cam1.TraceY * Cam1.TraceX * Cam2.LocationX -
Cam2.TraceY * Cam1.TraceY * Cam1.TraceZ * Cam1.LocationZ + Cam2.TraceY *
Cam1.TraceY * Cam1.TraceZ * Cam2.LocationZ - Cam2.TraceY * Cam2.LocationY *
Cam1.TraceX ^ 2 _
 - Cam2.TraceY * Cam2.LocationY * Cam1.TraceZ ^ 2 + Cam2.TraceZ *
Cam1.LocationZ * Cam1.TraceX ^ 2 + Cam2.TraceZ * Cam1.LocationZ * Cam1.TraceY
^ 2 - Cam2.TraceZ * Cam1.TraceZ * Cam1.TraceX * Cam1.LocationX + Cam2.TraceZ *
Cam1.TraceZ * Cam1.TraceX * Cam2.LocationX - Cam2.TraceZ * Cam1.TraceZ *
Cam1.TraceY * Cam1.LocationY + Cam2.TraceZ * Cam1.TraceZ * Cam1.TraceY *
Cam2.LocationY - Cam2.TraceZ * Cam2.LocationZ * Cam1.TraceX ^ 2 - Cam2.TraceZ
* Cam2.LocationZ * Cam1.TraceY ^ 2)

 t = t / t2

 s = (-Cam1.TraceX * Cam1.LocationX + Cam1.TraceX * Cam2.LocationX +
Cam1.TraceX * Cam2.TraceX * t - Cam1.TraceY * Cam1.LocationY + Cam1.TraceY *
Cam2.LocationY + Cam1.TraceY * Cam2.TraceY * t - Cam1.TraceZ * Cam1.LocationZ
+ Cam1.TraceZ * Cam2.LocationZ + Cam1.TraceZ * Cam2.TraceZ * t)

 s = s / s2

 X = (Cam1.LocationX + Cam1.TraceX * s + Cam2.LocationX + Cam2.TraceX * t) / 2
 Y = (Cam1.LocationY + Cam1.TraceY * s + Cam2.LocationY + Cam2.TraceY * t) / 2
 z = (Cam1.LocationZ + Cam1.TraceZ * s + Cam2.LocationZ + Cam2.TraceZ * t) / 2

 GetBiVectorCoords = vec3(X, Y, z)

 ObjectPos.X = X

 ObjectPos.Y = Y
 ObjectPos.z = z

 Me.lblCombined = ("X: " & X & vbCr & "Y: " & Y & vbCr & "Z: " & z)
 ''***********reccording to database***********
 If interval_i = 500 Then
 rst_cd.AddNew
 rst_cd.Fields("traj_x") = ObjectPos.X
 rst_cd.Fields("traj_y") = ObjectPos.Y
 rst_cd.Fields("traj_z") = ObjectPos.z
 rst_cd.Update
 interval_i = 0

''***************************Control*****************************

 - 89 -

Appendixes

control_x = Int(ObjectPos.X * 10) / 10
control_y = ObjectPos.Y
control_z = ObjectPos.z
''1 Transfer unit

''2 call control bottom
frmMain.Text1 = "MP " & Chr(control_x) & ", " & Chr(control_y) & ", " &
Chr(control_z)
Click.frmMain.SendBottom

''***************************Control End*****************************

 Else
 interval_i = interval_i + 1
 End If
 ''***********reccording to database finish***********

End Function

Private Sub LostTrace()
 Dim tmpAngles As D3DVECTOR2
 tmpAngles = GetPitchYaw(vec3(Cam1.LocationX, Cam1.LocationY,
Cam1.LocationZ), vec3(Cam2.SingleVectorX, Cam2.SingleVectorY,
Cam2.SingleVectorZ))
 Me.lblCam1_2.Caption = tmpAngles.X & " : " & Cam1.ServoYaw.CurrentAngle
 If (Timer - Cam1.LastSeenTime) > 750 And (Timer - Cam2.LastSeenTime) < 300
Then
 Cam1.LastSeenTime = Timer - 300
 Cam1.ServoYaw.GoalAngle = tmpAngles.X
 Cam1.ServoPitch.GoalAngle = tmpAngles.Y
 Cam1.RequestServoUpdate = True
 End If

 tmpAngles = GetPitchYaw(vec3(Cam2.LocationX, Cam2.LocationY,
Cam2.LocationZ), vec3(Cam1.SingleVectorX, Cam1.SingleVectorY,
Cam1.SingleVectorZ))
 Me.lblCam2_2.Caption = tmpAngles.X & " : " & Cam2.ServoYaw.CurrentAngle

 - 90 -

Appendixes

 If (Timer - Cam2.LastSeenTime) > 750 And (Timer - Cam1.LastSeenTime) < 300
Then
 Cam2.LastSeenTime = Timer - 300
 Cam2.ServoYaw.GoalAngle = tmpAngles.X
 Cam2.ServoPitch.GoalAngle = tmpAngles.Y
 Cam2.RequestServoUpdate = True
 End If

End Sub

Private Sub Command1_Click()

Delete_command_Click

stop_f = True
 Do While stop_f
 Timer = GetTickCount
 'GUI.Render
 DoEvents

 Cam1.Main
 Cam2.Main

 LostTrace

 ''Me.lblCam1_1.Caption = Cam1.ServoYaw.CurrentAngle
 ''Me.lblCam2_1.Caption = Cam2.ServoYaw.CurrentAngle
 Me.lblCam1_3.Caption = ("X: " & Cam1.SingleVectorX & vbCr & "Y: " &
Cam1.SingleVectorY & vbCr & "Z: " & Cam1.SingleVectorZ)
 Me.lblCam2_3.Caption = ("X: " & Cam2.SingleVectorX & vbCr & "Y: " &
Cam2.SingleVectorY & vbCr & "Z: " & Cam2.SingleVectorZ)

 GetBiVectorCoords

 Loop

End Sub

Private Sub Command3_Click()
 lblCombined.Caption = ""
 stop_f = False
 lblCombined.Caption = ""
End Sub

 - 91 -

Appendixes

Private Sub Delete_command_Click()
Dim ci As Double
Dim cj As Integer
Dim rst_delall As Recordset

Set rst_delall = dbs_cd.OpenRecordset("select * from " & table_cd, dbOpenDynaset)

cj = rst_delall.RecordCount
 Do While rst_delall.RecordCount > 0
 rst_delall.MoveFirst
 rst_delall.Delete
 rst_delall.MoveNext
 Loop

End Sub

Private Sub Form_Load()
 Me.Show
 frmMain.Show
 frmMain.Visible = False

 Dim tmpAngles As D3DVECTOR2

 'GUI.Initialise (GUIBox.hWnd)

 ' *****************Connected to Database Start*****************

db_cd = "trajectorynew.mdb"
table_cd = "trajectory1_t"
Set dbs_cd = OpenDatabase(AppDir & db_cd)
Set rst_cd = dbs_cd.OpenRecordset("select * from " & table_cd, dbOpenDynaset)
interval_i = 0
' *****************Connected to Database Finish*****************

 Call Cam1.Init(1, -18, 20, 0, High)
 Call Cam2.Init(2, 19, 20, 0, High)

 LoadProperties

End Sub

Private Sub Form_Unload(Cancel As Integer)

 - 92 -

Appendixes

 SaveProperties

End Sub

'------------------ Boring Variable Stuff ------------------

Private Sub SaveProperties()
 Open "Properties.dat" For Output As #1

 Write #1, NumboxCam1X.Value
 Write #1, NumboxCam1Y.Value
 Write #1, NumboxCam1Z.Value
 Write #1, NumboxCam1Pitch.Value
 Write #1, NumboxCam1Yaw.Value
'' Write #1, NumboxCam1ServoPitch.Value
'' Write #1, NumboxCam1ServoYaw.Value
 Write #1, NumboxCam1DegPixX.Value
 Write #1, NumboxCam1DegPixY.Value
'' Write #1, NumboxCam1AlphaX.Value
'' Write #1, NumboxCam1AlphaY.Value

 Write #1, NumboxCam2X.Value
 Write #1, NumboxCam2Y.Value
 Write #1, NumboxCam2Z.Value
 Write #1, NumboxCam2Pitch.Value
 Write #1, NumboxCam2Yaw.Value
'' Write #1, NumboxCam2ServoPitch.Value
'' Write #1, NumboxCam2ServoYaw.Value
 Write #1, NumboxCam2DegPixX.Value
 Write #1, NumboxCam2DegPixY.Value
'' Write #1, NumboxCam2AlphaX.Value
 '' Write #1, NumboxCam2AlphaY.Value

 Close #1

End Sub

Private Sub LoadProperties()

 Dim tmp

 - 93 -

Appendixes

 Open "Properties.dat" For Input As #1

 Line Input #1, tmp
 NumboxCam1X.Value = tmp

 Line Input #1, tmp
 NumboxCam1Y.Value = tmp

 Line Input #1, tmp
 NumboxCam1Z.Value = tmp

 Line Input #1, tmp
 NumboxCam1Pitch.Value = tmp

 Line Input #1, tmp
 NumboxCam1Yaw.Value = tmp

'' Line Input #1, tmp
'' NumboxCam1ServoPitch.Value = tmp

'' Line Input #1, tmp
'' NumboxCam1ServoYaw.Value = tmp

 Line Input #1, tmp
 NumboxCam1DegPixX.Value = tmp

 Line Input #1, tmp
 NumboxCam1DegPixY.Value = tmp

'' Line Input #1, tmp
'' NumboxCam1AlphaX.Value = tmp

'' Line Input #1, tmp
'' NumboxCam1AlphaY.Value = tmp

 Line Input #1, tmp
 NumboxCam2X.Value = tmp

 Line Input #1, tmp
 NumboxCam2Y.Value = tmp

 Line Input #1, tmp
 NumboxCam2Z.Value = tmp

 - 94 -

Appendixes

 Line Input #1, tmp
 NumboxCam2Pitch.Value = tmp

 Line Input #1, tmp
 NumboxCam2Yaw.Value = tmp

'' Line Input #1, tmp
'' NumboxCam2ServoPitch.Value = tmp

'' Line Input #1, tmp
'' NumboxCam2ServoYaw.Value = tmp

 Line Input #1, tmp
 NumboxCam2DegPixX.Value = tmp

 Line Input #1, tmp
 NumboxCam2DegPixY.Value = tmp

 '' Line Input #1, tmp
 '' NumboxCam2AlphaX.Value = tmp

'' Line Input #1, tmp
'' NumboxCam2AlphaY.Value = tmp

 Close #1

End Sub

Private Sub GUIBox_MouseMove(Button As Integer, Shift As Integer, X As Single, Y
As Single)

If Button = 1 Then
 Call SetViewCam(vec3(Sin(X / 100) * viewRadius * Sin(Y / 100), Cos(Y / 100) *
viewRadius, Cos(X / 100) * viewRadius * Sin(Y / 100)), vec3(0, 0, 0))
ElseIf Button = 2 Then
 viewRadius = Y / 10

 Call SetViewCam(vec3(1 * viewRadius, 1 * viewRadius, 0 * viewRadius), vec3(0, 0,
0))

End If

 - 95 -

Appendixes

End Sub

'----------Cam 1 -----------------

Private Sub NumboxCam1AlphaY_Change()
 If NumboxCam1AlphaY.Validate Then _
 Cam1.FilterAlphaY = NumboxCam1AlphaY.Value
End Sub

Private Sub NumboxCam1AlphaX_Change()
 If NumboxCam1AlphaX.Validate Then _
 Cam1.FilterAlphaX = NumboxCam1AlphaX.Value

End Sub

Private Sub NumboxCam1DegPixy_Change()
 If NumboxCam1DegPixY.Validate Then _
 Cam1.YPixelsPerRad = NumboxCam1DegPixY.Value

End Sub

Private Sub NumboxCam1DegPixX_Change()

 If NumboxCam1DegPixX.Validate Then _
 Cam1.XPixelsPerRad = NumboxCam1DegPixX.Value

End Sub

Private Sub NumboxCam1ServoYaw_Change()
 If NumboxCam1ServoYaw.Validate Then
 Cam1.ServoYaw.Offset = NumboxCam1ServoYaw.Value
 Cam1.RequestServoUpdate = True
 End If
End Sub

Private Sub NumboxCam1ServoPitch_Change()
 If NumboxCam1ServoPitch.Validate Then
 Cam1.ServoPitch.Offset = NumboxCam1ServoPitch.Value
 Cam1.RequestServoUpdate = True
 End If
End Sub

 - 96 -

Appendixes

Private Sub NumboxCam1X_Change()
 If NumboxCam1X.Validate Then _
 Cam1.LocationX = NumboxCam1X.Value
End Sub

Private Sub NumboxCam1Y_Change()
 If NumboxCam1Y.Validate Then _
 Cam1.LocationY = NumboxCam1Y.Value
End Sub
Private Sub NumboxCam1Z_Change()
 If NumboxCam1Z.Validate Then _
 Cam1.LocationZ = NumboxCam1Z.Value
End Sub

'----------Cam 2 -----------------

Private Sub NumboxCam2AlphaY_Change()
 If NumboxCam2AlphaY.Validate Then _
 Cam2.FilterAlphaY = NumboxCam2AlphaY.Value
End Sub

Private Sub NumboxCam2AlphaX_Change()
 If NumboxCam2AlphaX.Validate Then _
 Cam2.FilterAlphaX = NumboxCam2AlphaX.Value

End Sub

Private Sub NumboxCam2DegPixy_Change()
 If NumboxCam2DegPixY.Validate Then _
 Cam2.YPixelsPerRad = NumboxCam2DegPixY.Value

End Sub

Private Sub NumboxCam2DegPixX_Change()
 If NumboxCam2DegPixX.Validate Then _
 Cam2.XPixelsPerRad = NumboxCam2DegPixX.Value

End Sub

Private Sub NumboxCam2ServoYaw_Change()
 If NumboxCam2ServoYaw.Validate Then
 Cam2.ServoYaw.Offset = NumboxCam2ServoYaw.Value
 Cam2.RequestServoUpdate = True
 End If

 - 97 -

Appendixes

End Sub

Private Sub NumboxCam2ServoPitch_Change()
 If NumboxCam2ServoPitch.Validate Then
 Cam2.ServoPitch.Offset = NumboxCam2ServoPitch.Value
 Cam2.RequestServoUpdate = True
 End If
End Sub

Private Sub NumboxCam2X_Change()
 If NumboxCam2X.Validate Then _
 Cam2.LocationX = NumboxCam2X.Value
End Sub

Private Sub NumboxCam2Y_Change()
 If NumboxCam2Y.Validate Then _
 Cam2.LocationY = NumboxCam2Y.Value
End Sub

Private Sub NumboxCam2Z_Change()
 If NumboxCam2Z.Validate Then _
 Cam2.LocationZ = NumboxCam2Z.Value
End Sub

Private Sub RobFmDisplay_bottom_Click()
 frmMain.Show
 Me.Visible = False

End Sub

Robot Control GUI

Option Explicit

' program logic control
Private bLocalEcho As Boolean
Private bMessageMode As Boolean

' constants for setting the LED images,
' used as an index for imgLED()
Private Const RedOff As Long = 0
Private Const RedOn As Long = 1
Private Const GreenOff As Long = 2
Private Const GreenOn As Long = 3

 - 98 -

Appendixes

' the sendmessage API is used to write
' to the textbox to reduce flicker, this
' not required for serial communications.

' Win32 API constants
Private Const EM_GETSEL As Long = &HB0
Private Const EM_SETSEL As Long = &HB1
Private Const EM_GETLINECOUNT As Long = &HBA
Private Const EM_LINEINDEX As Long = &HBB
Private Const EM_LINELENGTH As Long = &HC1
Private Const EM_LINEFROMCHAR As Long = &HC9
Private Const EM_SCROLLCARET As Long = &HB7
Private Const WM_SETREDRAW As Long = &HB
Private Const WM_GETTEXTLENGTH As Long = &HE

' Win32 API declarations
Private Declare Function SendMessage Lib "user32" Alias "SendMessageA" _
 (ByVal hwnd As Long, ByVal wMsg As Long, ByVal wParam As Long, lParam As
Long) As Long

Private Sub cGripperClose_Click()
 If MSComm1.PortOpen Then MSComm1.Output = "GC" & vbCrLf
End Sub

Private Sub cGripperOpen_Click()
 If MSComm1.PortOpen Then MSComm1.Output = "GO" & vbCrLf
End Sub

Private Sub Command1_Click()

Dim command As String
command = Text1.Text

If MSComm1.PortOpen Then MSComm1.Output = command & vbCrLf

End Sub

Private Sub Command2_Click()

If MSComm1.PortOpen Then MSComm1.Output = "MJ +10,0,0,0,0" & vbCrLf

End Sub

Private Sub Command3_Click()

 - 99 -

Appendixes

If MSComm1.PortOpen Then MSComm1.Output = "MJ -10,0,0,0,0" & vbCrLf

End Sub

Private Sub Command4_Click()
Dim a As String
If MSComm1.PortOpen Then MSComm1.Output = "wh" & vbCrLf
a = MSComm1.Input
Text2.Text = Text2.Text & a
If MSComm1.PortOpen Then MSComm1.Output = "rs" & vbCrLf

End Sub

Private Sub cSendProgram_Click()

Dim I As Integer
Dim Data As Integer
Dim programline As Variant
Dim IndividualLine As String

If tProgram.Text = "" Then
 MsgBox "No program to send!!!"
 Exit Sub
End If

programline = Split(tProgram.Text, vbCrLf)
 For I = LBound(programline) To UBound(programline)
 IndividualLine = programline(I)
 If MSComm1.PortOpen Then MSComm1.Output = IndividualLine & vbCrLf
 Next I

End Sub

Private Sub Form_Load()

 ' just in case the default port won't open
 On Local Error Resume Next

 ' disply the startup message in the terminal window
 txtTerminal.Text = "Reveived data will be displayed here." & vbCrLf & _
 "Keys will be transmitted as you press them." & vbCrLf & _
 "If you are connected to a modem it should echo" & vbCrLf & _
 "each key press." & vbCrLf & vbCrLf & _

 - 100 -

Appendixes

 "To change the comm settings use the OPTIONS|SETTINGS menu." &
vbCrLf

 ' move the cursor to the end of text
 txtTerminal.SelStart = Len(txtTerminal)

 ' set the startup color for the Rx & Tx LED's
 Set imgRx.Picture = imgLed(GreenOff).Picture
 Set imgTx.Picture = imgLed(GreenOff).Picture

 Me.Show
 Me.Refresh

 ' setup the default comm port settings
 MSComm1.CommPort = 1 ' comm port 1
 MSComm1.RThreshold = 1 ' use 'on comm' event processing
 MSComm1.Settings = "9600,n,8,1" ' baud, parity, data bits, stop bits
 MSComm1.SThreshold = 1 ' allows us to track Tx LED
 MSComm1.InputMode = comInputModeBinary ' binary mode, you can also use
 ' comInputModeText for text only use
 ' open the port
 MSComm1.PortOpen = True

 ' display status
 ShowInfo
 mnuMode_Click (0)
 mnuMode_Click (3)

End Sub

Private Sub Form_Resize()

 ' resize the display controls to match the form
 picInfo.Move 0, Abs(Me.Height - 1135), Abs(Width - 120), 315
 'txtTerminal.Move 0, 0, Abs(Width - 120), picInfo.Top

End Sub

Private Sub imgDTR_Click()

 ' DTR & RTS are output lines on the comm control
 ' clicking the DTR LED will toggle the DTR line
 MSComm1.DTREnable = MSComm1.DTREnable Xor &HFFFF
 SetLEDs

End Sub

 - 101 -

Appendixes

Private Sub imgRTS_Click()

 ' DTR & RTS are output lines on the comm control
 ' clicking the RTS LED will toggle the RTS line
 MSComm1.RTSEnable = MSComm1.RTSEnable Xor &HFFFF
 SetLEDs

End Sub

Private Sub mnuClear_Click()

 ' clear the terminal window
 txtTerminal.Text = ""

End Sub

Private Sub mnuLocalEcho_Click()

 ' toggle local echo, if true, keypress's
 ' will be written to the terminal window
 mnuLocalEcho.Checked = mnuLocalEcho.Checked Xor &HFFFF
 If mnuLocalEcho.Checked Then
 bLocalEcho = True
 Else
 bLocalEcho = False
 End If

End Sub

Private Sub mnuLoopBack_Click()

 ' toggle on/off a timer that will send characters out the comm port for
 ' a simple loop back test. Connect pins 2 & 3 together to see the data

 mnuLoopBack.Checked = mnuLoopBack.Checked Xor &HFFFF
 If mnuLoopBack.Checked Then
 tmrLoopBack.Enabled = True
 Else
 tmrLoopBack.Enabled = False
 End If

End Sub

Private Sub mnuMode_Click(Index As Integer)

 - 102 -

Appendixes

 ' switch character receive modes, OnComm Event and Polled mode
 ' switch character buffer modes, character, and message

 Select Case Index

 Case 0
 mnuMode(1).Checked = False
 tmrPolledMode.Enabled = False
 MSComm1.RThreshold = 1
 lblMode = "Event"
 mnuMode(3).Enabled = True
 mnuMode(4).Enabled = True
 If bMessageMode Then mnuMode(4).Checked = True Else
mnuMode(3).Checked = True

 Case 1
 mnuMode(0).Checked = False
 MSComm1.RThreshold = 0
 tmrPolledMode.Enabled = True
 lblMode = "Polled"
 mnuMode(4).Checked = False
 mnuMode(3).Checked = False
 mnuMode(3).Enabled = False
 mnuMode(4).Enabled = False

 Case 3
 mnuMode(4).Checked = False
 bMessageMode = False

 Case 4
 mnuMode(3).Checked = False
 bMessageMode = True

 End Select

 mnuMode(Index).Checked = True

End Sub

Private Sub mnuSettings_Click()

 Dim bLoaded As Boolean
 Dim frm As Form

 ' open the comm settings form
 frmSettings.CommSettings Me.MSComm1, "Communications Port Settings"

 - 103 -

Appendixes

 ' wait for the settings form to unload
 ' modal is not used so multi port apps can
 ' continue while the settings form is visible.
 ' this is only required because we want to
 ' capture the new settings & display them.

 Do
 bLoaded = False
 For Each frm In Forms
 If frm.Name = "frmSettings" Then bLoaded = True
 Next
 DoEvents
 Loop While bLoaded

 ' display the new settings
 ShowInfo

End Sub

Private Sub MSComm1_OnComm()

'***

' Synopsis: Handle incoming characters, 'On Comm' Event
'
' Description: By setting MSComm1.RThreshold = 1, this event will fire for
' each character that arrives in the comm controls input buffer.
' Set MSComm1.RThreshold = 0 if you want to poll the control
' yourself, either via a TImer or within program execution loop.
'
' In most cases, OnComm Event processing shown here is the prefered
' method of processing incoming characters.
'
'***

 Static sBuff As String ' buffer for holding incoming characters
 Const MTC As String = vbCrLf ' message terminator characters (ususally vbCrLf)
 Const LenMTC As Long = 2 ' number of terminator characters, must match
MTC
 Dim iPtr As Long ' pointer to terminatior character

 ' OnComm fires for multiple Events
 ' so get the Event ID & process

 - 104 -

Appendixes

 Select Case MSComm1.CommEvent

 ' Received RThreshold # of chars, in our case 1.
 Case comEvReceive

 ' read all of the characters from the input buffer
 ' StrConv() is required when using MSComm in binary mode,
 ' if you set MSComm1.InputMode = comInputModeText, it's not required

 sBuff = sBuff & StrConv(MSComm1.Input, vbUnicode)

 ' a typical application would buffer characters here waiting for
 ' an end of message sequence like vbCrLf, that's why sBuff is declared
 ' as Static and the statement above sets sBuff = sBuff & MSComm1.Input
 ' When an end of message string is received the messages are passed
 ' through a parser routine. Here, we show processing a character at
 ' time and 'message parsing' options. MEssage parsing varies depending
 ' on what you're doing but would look something like this:

 If bMessageMode Then
 ' in message mode we wait for the message terminator
 ' before processing. This is typcal of a command & control
 ' program that interfaces with an external device and
 ' must decode data coming from the device. Most devices will
 ' use a start / end sequennce to ID each message. You
 ' would process the messages by calling your message parser and
 ' passing the message just like the message is passed to the
 ' PosTerminal routine below. Some device's use character count
 ' to ID messages instead of start/end characters, this method is
 ' too machine specific to be shown here.

 ' look for message terminator
 iPtr = InStr(sBuff, MTC)
 ' process all queued messages
 Do While iPtr
 ' pass each message to the message parser
 ' in our case, it just gets displayed. To decode
 ' specific messages, you would pass the string
 ' Mid$(sBuff, 1, iPtr + LenMTC - 1)
 ' to a message decoder routime
 PostTerminal Mid$(sBuff, 1, iPtr + LenMTC - 1)
 ' remove from the message queue
 sBuff = Mid$(sBuff, iPtr + LenMTC)
 ' look for another message
 iPtr = InStr(sBuff, MTC)
 Loop

 - 105 -

Appendixes

 Else
 ' in character mode we just pass each character to
 ' the parser as it comes in. The parser is responsibe
 ' for collecting the characters and assembling any messages.
 ' For our simple terminal example, character mode works fine.
 PostTerminal sBuff
 sBuff = vbNullString
 End If

 ' flash the Rx LED
 Set imgRx.Picture = imgLed(GreenOn).Picture
 tmrRxLED.Enabled = True

 ' Change in the CD line.
 Case comEvCD
 SetLEDs

 ' Change in the CTS line.
 Case comEvCTS
 SetLEDs

 ' Change in the DSR line.
 Case comEvDSR
 SetLEDs

 ' Change in the Ring Indicator.
 Case comEvRing

 ' An EOF charater was found in the input stream
 Case comEvEOF

 ' There are SThreshold number of characters in the transmit buffer.
 Case comEvSend
 Set imgTx.Picture = imgLed(GreenOn).Picture
 tmrTxLED.Enabled = True

 ' A Break was received.
 Case comEventBreak
 lblError = "Break"
 tmrClearError.Enabled = True

 ' Framing Error
 Case comEventFrame

 - 106 -

Appendixes

 lblError = "Framing"
 tmrClearError.Enabled = True

 ' Data Lost.
 Case comEventOverrun
 lblError = "Overrun"
 tmrClearError.Enabled = True

 ' Receive buffer overflow.
 Case comEventRxOver
 lblError = "Overflow"
 tmrClearError.Enabled = True

 ' Parity Error.
 Case comEventRxParity
 lblError = "Parity"
 tmrClearError.Enabled = True

 ' Transmit buffer full.
 Case comEventTxFull
 lblError = "Tx Full"
 tmrClearError.Enabled = True

 ' Unexpected error retrieving DCB]
 Case comEventDCB
 lblError = "DCB Error"
 tmrClearError.Enabled = True

 End Select

End Sub

Public Sub PostTerminal(ByVal sNewData As String)

 ' display incoming characters in the
 ' textbox 'terminal' window. API is
 ' used only to reduce flicker.

 Dim lPtr As Long

 ' this is faster and has less flicker but requires use of the Win API
 With txtTerminal
 lPtr = SendMessage(.hwnd, EM_GETLINECOUNT, 0, ByVal 0&)
 If lPtr > 550 Then
 'LockWindowUpdate .hWnd

 - 107 -

Appendixes

 Call SendMessage(.hwnd, WM_SETREDRAW, False, ByVal 0&)
 lPtr = SendMessage(.hwnd, EM_LINEINDEX, 100, ByVal 0&)
 .SelStart = 0
 .SelLength = IIf(lPtr > 0, lPtr, 1000)
 .SelText = vbNullString
 Call SendMessage(.hwnd, WM_SETREDRAW, True, ByVal 0&)
 ' LockWindowUpdate 0
 End If
 .SelStart = SendMessage(.hwnd, WM_GETTEXTLENGTH, True, ByVal 0&)
 .SelText = sNewData
 .SelStart = SendMessage(.hwnd, WM_GETTEXTLENGTH, True, ByVal 0&)
 End With

End Sub

Private Sub tmrClearError_Timer()

 lblError = ""
 tmrClearError.Enabled = False

End Sub

Private Sub tmrPolledMode_Timer()

 ' example of polled mode. This is an alternative to using
 ' the MSComm1 OnComm Event for receiving characters.
 ' collect characters here when the Timer fires. See
 ' the comments in MSComm1 OnComm Event for information
 ' on more complex processing. message mode has not been
 ' implimented here, see MSComm1 OnComm Event for example
 ' of message mode operation.

 If MSComm1.InBufferCount Then
 PostTerminal StrConv(MSComm1.Input, vbUnicode)
 Set imgRx.Picture = imgLed(GreenOn).Picture
 tmrRxLED.Enabled = True
 End If

End Sub

Private Sub tmrRxLED_Timer()

 Set imgRx.Picture = imgLed(GreenOff).Picture
 tmrRxLED.Enabled = False

End Sub

 - 108 -

Appendixes

Private Sub tmrTxLED_Timer()

 Set imgTx.Picture = imgLed(GreenOff).Picture
 tmrTxLED.Enabled = False

End Sub

Private Sub tmrLoopBack_Timer()

 ' use this timer to send some characters out so we can test our receive code...
 ' this is only here for the loop back demo, it is not required for communications

 If MSComm1.PortOpen Then
 MSComm1.Output = Me.Caption & Format$(Timer, " ###,##0.000") & vbCrLf
 End If

End Sub

Private Sub txtTerminal_KeyPress(KeyAscii As Integer)

 ' send keys out the comm port, convert vbCr to vbCrLf
 Select Case KeyAscii
 Case 13
 If MSComm1.PortOpen Then MSComm1.Output = vbCrLf
 Case Else
 If MSComm1.PortOpen Then MSComm1.Output = Chr$(KeyAscii)
 End Select

 If Not bLocalEcho Then KeyAscii = 0

End Sub

Private Sub ShowInfo()

 ' display status info
 lblSettings = UCase$(MSComm1.Settings)
 lblPort = "Port " & MSComm1.CommPort
 lblOpen = IIf(MSComm1.PortOpen, "Open", "Closed")
 lblError = ""

 SetLEDs

End Sub

Private Sub SetLEDs()

 - 109 -

Appendixes

 ' set the status LED's
 Set imgCD.Picture = IIf(MSComm1.CDHolding, imgLed(RedOn).Picture,
imgLed(RedOff).Picture)
 Set imgCTS.Picture = IIf(MSComm1.CTSHolding, imgLed(RedOn).Picture,
imgLed(RedOff).Picture)
 Set imgDSR.Picture = IIf(MSComm1.DSRHolding, imgLed(RedOn).Picture,
imgLed(RedOff).Picture)
 Set imgRTS.Picture = IIf(MSComm1.RTSEnable, imgLed(RedOn).Picture,
imgLed(RedOff).Picture)
 Set imgDTR.Picture = IIf(MSComm1.DTREnable, imgLed(RedOn).Picture,
imgLed(RedOff).Picture)

End Sub

 - 110 -

