Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.
WIND EROSION IN HAWKE’S BAY:
THE INFLUENCE OF SOIL AGGREGATE SIZE
AND CULTIVATION MANAGEMENT ON
SEDIMENT FLUX

A thesis presented in partial fulfilment of the requirements
for the degree of
Masters of Applied Science (Natural Resource Management)
at Massey University, Palmerston North

Callum R Eastwood

2000
“What now remains compared to what existed is like the skeleton of a sick man, all the fat and soft earth having wasted away, and only the bare framework of the land being left.”

Plato describing effects of erosion in classical Greece (cited in Clark et al., 1985).
Abstract

The influence of soil aggregate size and cultivation management on sediment flux of two Hawke's Bay soils was investigated. Hawke's Bay Regional Council initiated, and partially funded, the project after they identified wind erosion as a significant land management issue in their region.

Wind erosion was simulated on Pakipaki sandy loam (Typic Sandy Recent Soil) and Takapau silt loam (Typic Orthic Allophanic Soil) soil types using a portable wind tunnel. Three different cultivation treatments were applied to research sites on each soil, with eight replicates of each treatment positioned via a split-plot, randomised block trial design. Treatments were designed to produce a range of soil aggregate size distributions. A minimum tillage treatment was also simulated. At each plot, surface (10 mm depth) soil samples were collected for gravimetric moisture content, soil aggregate size and aggregate stability tests. Surface roughness and vegetative cover were measured only on Takapau plots.

The Takapau silt loam plots were very susceptible to aggregate breakdown under cultivation, with only a quarter of soil aggregates over 0.85 mm in size after one pass with the cultivator. Two additional passes did not cause a significant change in aggregate size. Minimum tillage on the Takapau plots lead to markedly lower mean sediment flux rates (0.2 gm⁻¹s⁻¹) compared to one pass with a cultivator (3.4 gm⁻¹s⁻¹).

The Pakipaki sandy loam exhibited higher resistance to aggregate breakdown compared to Takapau silt loam. After one pass of the cultivator 50 percent of aggregates measured were over 0.85 mm in size, reducing to 45 and 43.3 percent after two and three passes respectively. Data collected from Pakipaki plots suggest decreasing soil aggregate size leads to increasing erosion rates. The relationship was not significant (P<0.05) primarily due to a high variance in results within treatments. Minimum tillage on the Pakipaki sandy loam also resulted in considerably lower mean sediment flux (0.03 gm⁻¹s⁻¹) than the least cultivated plots (1.8 gm⁻¹s⁻¹).

The results highlighted some important implications for cultivation management in Hawke's Bay. Use of conventional cultivation techniques on Takapau silt loam soils should be avoided due to the high risk of aggregate breakdown and the subsequent wind erosion risk. Minimum or no-tillage with maximum retention of vegetative residue is the most appropriate for continued arable farming on such soils. In comparison, soil structural characteristics of the Pakipaki sandy loam soil allow for greater manipulation of aggregate size through cultivation. However, the sediment flux measured off Pakipaki plots indicates other wind erosion control techniques, such as windbreaks and stubble retention, should be utilised in conjunction with maintenance of large aggregate size to adequately control soil wind erosion.
ACKNOWLEDGEMENTS

After two years it continues to amaze me how many kilometres you can travel when researching the effect of some breeze on some fluffy soil in Hawke’s Bay! Endless trips from Palmy to Hastings, trips to Christchurch, even trips to Australia. Amongst such travels you inevitably meet some great people who are only too happy to help you, so I’d like to take this chance to thank those people.

In Hawke’s Bay I’d like to profusely thank Dan Bloomer for his knowledge, support, amusing emails and ice-block delivery service, and the HBRC for supporting this work. Moray Grant and Jonathan Wiltshire gave me land to work on, and seemed to always be on hand when the tractor went dead or I needed advice. Stu MacIntyre again stepped in to offer machinery, advice and the occasional persuasive phonecall! I owe Powertrae Hawke’s Bay thanks for use of their tractor.

In Palmy, Mark Osbourne and Roger Levy were great in the PTC as I tried to apply my 3rd form metalwork skills to the tunnel. John Dando once again went out of his way to help. Thanks to Alan Palmer for his guidance, and Stu Morriss for putting up with me popping in this year. Patrick Hesp was awesome with his advice and provision of contacts and equipment and is just basically a great guy to talk to. John Holland, you are an inspiration to me as much on a personal level as an academic one.

In Christchurch I thank Rick Deihl from Lincoln University for sending items up on demand, and Dr David Painter and Dr Les Basher for advice.

In Australia, John Leys has answered my frequent questions with a depth of knowledge and a level of detail that I can only admire and aspire to. I thank him for hosting me for a week, introducing me to Aussie wind erosion, and being a great tour guide across the Mallee Plains.

My friends and family deserve my heartfelt thanks. I have sometimes read other thesis acknowledgements and scorned their attention to family and friends, but now I see what they were on about! Sasha, my big sis, thanks so much for your drop-of-a-hat help with my fieldwork. Thanks also to Brooke (my little sis), Sean (recalled from Canada) and Amy for your help in the Bay, and Mum and Dad for support from home. The NRM gang has remained just as important this year, Sal down South, Paula and Bernie up North, and Anita here in Palmy, I hope success continues to follow you.
TABLE OF CONTENTS

EXECUTIVE SUMMARY...i
ACKNOWLEDGEMENTS...iii

TABLE OF CONTENTS..1

LIST OF FIGURES...4

LIST OF TABLES...4

1. INTRODUCTION ..5

1.1 **PROBLEM STATEMENT**..6
1.2 **OBJECTIVES**...6
1.3 **IMPORTANCE OF RESEARCH**..7
1.4 **OUTLINE OF THESIS**..7

2. LITERATURE REVIEW ...8

2.1 **INTRODUCTION**...8
2.2 **THE WIND EROSION ISSUE**...8
 2.2.1 Wind erosion globally...8
 2.2.2 Wind erosion in New Zealand...10
 2.2.3 Wind erosion in Hawke's Bay..11
2.3 **WIND EROSION PROCESSES**..15
 2.3.1 Transport modes ...15
 2.3.2 Effect of field length...17
 2.3.3 Vertical distribution...17
 2.3.4 Factors influencing vulnerability..17
2.4 **IMPACTS OF WIND EROSION**..23
 2.4.1 Physical..23
 2.4.2 Economic..24
2.5 **CULTIVATION AND WIND EROSION**..25
2.6 **WIND EROSION RESEARCH**..27
 2.6.1 Portable wind machines and wind erosion research................27
 2.6.2 Lincoln University portable wind machine...............................29
 2.6.3 Wind erosion sediment samplers...31
 2.6.4 1998 Research...32
2.7 **SUMMARY**..33

3. RESEARCH METHODOLOGY ...34

3.1 **INTRODUCTION**...34
3.2 **FIELDWORK PREPARATION**...34
 3.2.1 **Australian research trip**..34
 3.2.2 Wind machine calibration...34
 3.2.3 Sediment sampler construction..36
 3.2.4 Selection of cultivation techniques...37
 3.2.5 Loss of sediment source...39
 3.2.6 Experimental sites...40

Wind erosion in Hawke's Bay: the influence of cultivation and soil aggregate size
3.3 EXPERIMENTAL DESIGN ... 42
 3.3.1 Randomised split-block design ... 42
 3.3.2 Data collection procedure ... 42
3.4 LABORATORY ANALYSIS ... 46
 3.4.1 Aggregate size analysis ... 46
 3.4.2 Wet aggregate stability ... 46
 3.4.3 Soil surface moisture content ... 47
 3.4.4 Mass of sediment flux sampled ... 47
 3.4.5 Sieving of eroded sediment ... 47
 3.4.6 Nutrient analysis ... 48
3.5 ANALYSIS OF RESULTS ... 48
 3.5.1 Calculation of sediment flux (Q) .. 48
 3.5.2 Calculation of sediment flux at 35 km/h⁻¹ 48
 3.5.3 Calculation of nutrient losses .. 49

4. RESULTS ... 50
 4.1 INTRODUCTION .. 50
 4.2 WIND MACHINE USE .. 51
 4.2.1 Calibration ... 51
 4.3 EXPERIMENTAL RESULTS ... 51
 4.3.1 Limited sediment supply investigation 51
 4.3.2 Soil aggregate size .. 52
 4.3.3 Soil surface moisture content ... 55
 4.3.4 Wet aggregate stability .. 55
 4.3.5 Surface roughness ... 56
 4.3.6 Vegetation cover .. 57
 4.3.7 Sediment flux ... 58
 4.3.8 Sediment flux at 35 km/h⁻¹ ... 60
 4.3.9 Percentage of soil aggregates >0.85 mm v sediment flux (g/m²/s) at 35 km/h⁻¹ 62
 4.3.10 Nutrient loss in sediment flux ... 65
 4.3.11 Minimum tillage .. 66
 4.3.12 Regression analysis of all variables by site 66

5. DISCUSSION .. 68
 5.1 QUANTITATIVE WIND EROSION DATA 68
 5.1.1 Introduction .. 68
 5.1.2 Research methodology .. 68
 5.1.3 Discussion of results .. 70
 5.1.4 Qualifications to use of results from this thesis 79
 5.2 WIND EROSION MANAGEMENT IN HAWKE'S BAY 79
 5.2.1 Reducing wind velocity at the soil surface 80
 5.2.2 Trapping soil particles .. 81
 5.2.3 Increasing the size of soil aggregates 82
 5.2.4 Summary ... 83
 5.3 POSSIBLE POLICY INITIATIVES FOR WIND EROSION MINIMISATION 83
 5.3.1 Factors influencing uptake of management advice 83
 5.3.2 Policy approaches at regional council level 84
 5.4 ACHIEVEMENT OF PROJECT OBJECTIVES 86

6. CONCLUSIONS ... 88

7. REFERENCES ... 90
 7.1 PERSONAL COMMUNICATIONS .. 95

Wind erosion in Hawke's Bay: the influence of cultivation and soil aggregate size
Wind erosion in Hawke’s Bay: the influence of cultivation and soil aggregate size
LIST OF FIGURES

Figure 2.2.1: Wind erosion potential in Hawke’s Bay
Figure 2.3.1: Wind erosion transport modes.
Figure 2.3.2: Australian wind erosion assessment model.
Figure 2.6.1: The Lincoln University Wind Tunnel (LUWT) set up on a Pakipaki plot
Figure 2.6.2: Schematic of the Lincoln University wind machine.
Figure 2.6.3: The Nickling sediment sampler used for the Hawke’s Bay research
Figure 3.2.1: The modified Great Plains corn planter used for the minimum tillage treatment:
Figure 3.3.1: Flow diagram of fieldwork procedure
Figure 4.2.1: Wind machine calibration over a bare, cultivated soil surface.
Figure 4.3.1: Soil aggregate size distribution of Takapau treatments
Figure 4.3.2: Soil aggregate size distribution of Pakipaki treatments
Figure 4.3.3: Aggregate stability of Takapau and Pakipaki soils
Figure 4.3.4: Sediment flux at a range of wind speeds under treatment T3
Figure 4.3.5: Sediment flux at a range of wind speeds under treatment P3
Figure 4.3.6: Method used to manually determine sediment flux at 35 kmh⁻¹.
Figure 4.3.7: Sediment flux (gm⁻¹s⁻¹) at 35 kmh⁻¹ v percentage of Takapau soil aggregates >0.85mm
Figure 4.3.8: Sediment flux (gm⁻¹s⁻¹) at 35 kmh⁻¹ v percentage of Pakipaki soil aggregates >0.85mm
Figure 4.3.9: Mean aggregate size distribution of Takapau sediment flux
Figure 4.3.10: Mean aggregate size distribution of Pakipaki sediment flux
Figure A-2.1: Soil surface moisture content of Takapau and Pakipaki plots
Figure A-3.1: Sediment flux at a range of wind speeds under treatment T1
Figure A-3.2: Sediment flux at a range of wind speeds under treatment T2
Figure A-3.3: Sediment flux at a range of wind speeds under treatment P1
Figure A-3.4: Sediment flux at a range of wind speeds under treatment P2
Figure A-4.1: Sediment flux at a range of wind speeds under minimum tillage on Pakipaki site
Figure A-4.2: Sediment flux at a range of wind speeds under minimum tillage on Takapau site
Figure A-6.2: One-way ANOVA testing for significance between aggregate size on plots.

LIST OF TABLES

Table 2.2.1: Distribution of arid-region soils by continent (excluding Polar Regions)
Table 4.3.1: Sediment flux (gm⁻¹s⁻¹) at 37 kmh⁻¹ for three sequential runs
Table 4.3.2: Percentage of soil aggregates > 0.85 mm
Table 4.3.3: Gravimetric moisture content of soil to 10 mm depth
Table 4.3.4: Descriptive statistics for mean surface roughness on Takapau treatments (%)
Table 4.3.5: Descriptive statistics for mean vegetation cover on Takapau treatments
Table 4.3.6: Descriptive statistics for treatment means of sediment flux (gm⁻¹s⁻¹) at 35 kmh⁻¹
Table 4.3.7: Nutrient analysis of surface and eroded soil from Takapau and Pakipaki sites.
Table 5.1.1: Losses of available nutrients in 100 tonnes of soil

Wind erosion in Hawke’s Bay: the influence of cultivation and soil aggregate size 4